Invariants
| Base field: | $\F_{179}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 - 6 x + 179 x^{2}$ |
| Frobenius angles: | $\pm0.428013141290$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-170}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $12$ |
| Isomorphism classes: | 12 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $174$ | $32364$ | $5738346$ | $1026586080$ | $183765221214$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $174$ | $32364$ | $5738346$ | $1026586080$ | $183765221214$ | $32894115879564$ | $5888046460096506$ | $1053960289373646720$ | $188658891686520800334$ | $33769941616049120839404$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 12 curves (of which 0 are hyperelliptic):
- $y^2=x^3+125 x+125$
- $y^2=x^3+172 x+165$
- $y^2=x^3+80 x+80$
- $y^2=x^3+111 x+43$
- $y^2=x^3+117 x+55$
- $y^2=x^3+28 x+28$
- $y^2=x^3+83 x+166$
- $y^2=x^3+15 x+30$
- $y^2=x^3+174 x+169$
- $y^2=x^3+97 x+97$
- $y^2=x^3+118 x+118$
- $y^2=x^3+68 x+136$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{179}$.
Endomorphism algebra over $\F_{179}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-170}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.179.g | $2$ | (not in LMFDB) |