Properties

Label 1.173.az
Base field $\F_{173}$
Dimension $1$
$p$-rank $1$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{173}$
Dimension:  $1$
L-polynomial:  $1 - 25 x + 173 x^{2}$
Frobenius angles:  $\pm0.100717649571$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-67}) \)
Galois group:  $C_2$
Jacobians:  $1$
Isomorphism classes:  1

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $149$ $29651$ $5175068$ $895727059$ $154963900969$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $149$ $29651$ $5175068$ $895727059$ $154963900969$ $26808756665024$ $4637914408239373$ $802359179944193475$ $138808137898917085964$ $24013807852920796939211$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobian of 1 curve (which is not hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{173}$.

Endomorphism algebra over $\F_{173}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-67}) \).

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
1.173.z$2$(not in LMFDB)