Invariants
| Base field: | $\F_{167}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 + 2 x + 167 x^{2}$ |
| Frobenius angles: | $\pm0.524656207378$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-166}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $10$ |
| Isomorphism classes: | 10 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $170$ | $28220$ | $4656470$ | $777743200$ | $129892257850$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $170$ | $28220$ | $4656470$ | $777743200$ | $129892257850$ | $21691969923260$ | $3622557524475430$ | $604967115694780800$ | $101029508545415998730$ | $16871927925114763423100$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 10 curves (of which 0 are hyperelliptic):
- $y^2=x^3+134 x+134$
- $y^2=x^3+128 x+128$
- $y^2=x^3+69 x+11$
- $y^2=x^3+6 x+30$
- $y^2=x^3+127 x+134$
- $y^2=x^3+20 x+20$
- $y^2=x^3+3 x+15$
- $y^2=x^3+147 x+67$
- $y^2=x^3+84 x+86$
- $y^2=x^3+71 x+71$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{167}$.
Endomorphism algebra over $\F_{167}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-166}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.167.ac | $2$ | (not in LMFDB) |