Invariants
| Base field: | $\F_{167}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 - 18 x + 167 x^{2}$ |
| Frobenius angles: | $\pm0.254765830261$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-86}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $10$ |
| Isomorphism classes: | 10 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $150$ | $27900$ | $4660650$ | $777852000$ | $129892455750$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $150$ | $27900$ | $4660650$ | $777852000$ | $129892455750$ | $21691960760700$ | $3622557493037850$ | $604967115416688000$ | $101029508520333319350$ | $16871927924967845629500$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 10 curves (of which 0 are hyperelliptic):
- $y^2=x^3+x+5$
- $y^2=x^3+76 x+46$
- $y^2=x^3+116 x+116$
- $y^2=x^3+124 x+124$
- $y^2=x^3+110 x+110$
- $y^2=x^3+17 x+85$
- $y^2=x^3+98 x+156$
- $y^2=x^3+41 x+41$
- $y^2=x^3+57 x+57$
- $y^2=x^3+137 x+17$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{167}$.
Endomorphism algebra over $\F_{167}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-86}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.167.s | $2$ | (not in LMFDB) |