Invariants
| Base field: | $\F_{167}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 - 17 x + 167 x^{2}$ |
| Frobenius angles: | $\pm0.271508440428$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-379}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $3$ |
| Isomorphism classes: | 3 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $151$ | $27935$ | $4661068$ | $777850075$ | $129892297541$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $151$ | $27935$ | $4661068$ | $777850075$ | $129892297541$ | $21691957922480$ | $3622557472044683$ | $604967115627342675$ | $101029508528964754756$ | $16871927925091576933175$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 3 curves (of which 0 are hyperelliptic):
- $y^2=x^3+155 x+155$
- $y^2=x^3+143 x+47$
- $y^2=x^3+55 x+108$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{167}$.
Endomorphism algebra over $\F_{167}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-379}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.167.r | $2$ | (not in LMFDB) |