Invariants
| Base field: | $\F_{163}$ | 
| Dimension: | $1$ | 
| L-polynomial: | $1 + 3 x + 163 x^{2}$ | 
| Frobenius angles: | $\pm0.537484508762$ | 
| Angle rank: | $1$ (numerical) | 
| Number field: | \(\Q(\sqrt{-643}) \) | 
| Galois group: | $C_2$ | 
| Jacobians: | $3$ | 
| Isomorphism classes: | 3 | 
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ | 
| Slopes: | $[0, 1]$ | 
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | 
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $167$ | $26887$ | $4329308$ | $705864411$ | $115063993817$ | 
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ | 
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $167$ | $26887$ | $4329308$ | $705864411$ | $115063993817$ | $18755376165904$ | $3057125160037787$ | $498311413487827443$ | $81224760549576585764$ | $13239635967106329404407$ | 
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 3 curves (of which 0 are hyperelliptic):
- $y^2=x^3+132 x+132$
- $y^2=x^3+157 x+157$
- $y^2=x^3+45 x+90$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{163}$.
Endomorphism algebra over $\F_{163}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-643}) \). | 
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change | 
|---|---|---|
| 1.163.ad | $2$ | (not in LMFDB) | 
