Invariants
| Base field: | $\F_{157}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 + 11 x + 157 x^{2}$ |
| Frobenius angles: | $\pm0.644648694625$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-3}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $5$ |
| Isomorphism classes: | 5 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $169$ | $24843$ | $3866044$ | $607585251$ | $95389464469$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $169$ | $24843$ | $3866044$ | $607585251$ | $95389464469$ | $14976064748736$ | $2351243281357321$ | $369145195643354403$ | $57955795535652304108$ | $9099059901007479391443$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 5 curves (of which 0 are hyperelliptic):
- $y^2=x^3+15$
- $y^2=x^3+6 x+6$
- $y^2=x^3+74 x+148$
- $y^2=x^3+153 x+153$
- $y^2=x^3+80 x+80$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{157}$.
Endomorphism algebra over $\F_{157}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}) \). |
Base change
This is a primitive isogeny class.