Invariants
| Base field: | $\F_{149}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 + 4 x + 149 x^{2}$ |
| Frobenius angles: | $\pm0.552390139656$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-145}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $8$ |
| Isomorphism classes: | 8 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $154$ | $22484$ | $3306226$ | $492849280$ | $73440173114$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $154$ | $22484$ | $3306226$ | $492849280$ | $73440173114$ | $10942530230324$ | $1630436387621426$ | $242935032501342720$ | $36197319891604872154$ | $5393400662052389914004$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 8 curves (of which 0 are hyperelliptic):
- $y^2=x^3+51 x+102$
- $y^2=x^3+43 x+86$
- $y^2=x^3+119 x+119$
- $y^2=x^3+132 x+132$
- $y^2=x^3+143 x+143$
- $y^2=x^3+132 x+115$
- $y^2=x^3+32 x+64$
- $y^2=x^3+45 x+45$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{149}$.
Endomorphism algebra over $\F_{149}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-145}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.149.ae | $2$ | (not in LMFDB) |