Invariants
| Base field: | $\F_{149}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 - 5 x + 149 x^{2}$ |
| Frobenius angles: | $\pm0.434343007656$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-571}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $5$ |
| Isomorphism classes: | 5 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $145$ | $22475$ | $3310060$ | $492854275$ | $73439310725$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $145$ | $22475$ | $3310060$ | $492854275$ | $73439310725$ | $10942528750400$ | $1630436541511265$ | $242935032827261475$ | $36197319868074805180$ | $5393400661994039811875$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 5 curves (of which 0 are hyperelliptic):
- $y^2=x^3+86 x+23$
- $y^2=x^3+85 x+21$
- $y^2=x^3+60 x+60$
- $y^2=x^3+88 x+88$
- $y^2=x^3+115 x+81$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{149}$.
Endomorphism algebra over $\F_{149}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-571}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.149.f | $2$ | (not in LMFDB) |