Invariants
| Base field: | $\F_{131}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 + 20 x + 131 x^{2}$ |
| Frobenius angles: | $\pm0.838288723584$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-31}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $6$ |
| Isomorphism classes: | 6 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $152$ | $17024$ | $2248232$ | $294515200$ | $38579165752$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $152$ | $17024$ | $2248232$ | $294515200$ | $38579165752$ | $5053917620864$ | $662062574800072$ | $86730203824588800$ | $11361656653498363352$ | $1488377021703863871104$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 6 curves (of which 0 are hyperelliptic):
- $y^2=x^3+6 x+12$
- $y^2=x^3+117 x+117$
- $y^2=x^3+93 x+93$
- $y^2=x^3+4 x+4$
- $y^2=x^3+2 x+4$
- $y^2=x^3+45 x+90$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{131}$.
Endomorphism algebra over $\F_{131}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-31}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.131.au | $2$ | (not in LMFDB) |