Properties

Label 1.131.i
Base field $\F_{131}$
Dimension $1$
$p$-rank $1$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{131}$
Dimension:  $1$
L-polynomial:  $1 + 8 x + 131 x^{2}$
Frobenius angles:  $\pm0.613642289589$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-115}) \)
Galois group:  $C_2$
Jacobians:  $8$
Isomorphism classes:  8

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $1$
Slopes:  $[0, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $140$ $17360$ $2245460$ $294495040$ $38579873500$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $140$ $17360$ $2245460$ $294495040$ $38579873500$ $5053910713040$ $662062591066660$ $86730204034172160$ $11361656653957764140$ $1488377021661435794000$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 8 curves (of which 0 are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{131}$.

Endomorphism algebra over $\F_{131}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-115}) \).

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
1.131.ai$2$(not in LMFDB)