Invariants
| Base field: | $\F_{131}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 - 16 x + 131 x^{2}$ |
| Frobenius angles: | $\pm0.253645088345$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-67}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $4$ |
| Isomorphism classes: | 4 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $116$ | $17168$ | $2250284$ | $294534208$ | $38579751076$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $116$ | $17168$ | $2250284$ | $294534208$ | $38579751076$ | $5053912835600$ | $662062582715356$ | $86730202882476288$ | $11361656650188633044$ | $1488377021740432573328$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 4 curves (of which 0 are hyperelliptic):
- $y^2=x^3+98 x+65$
- $y^2=x^3+21 x+42$
- $y^2=x^3+54 x+54$
- $y^2=x^3+88 x+45$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{131}$.
Endomorphism algebra over $\F_{131}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-67}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.131.q | $2$ | (not in LMFDB) |