Invariants
| Base field: | $\F_{113}$ |
| Dimension: | $1$ |
| L-polynomial: | $1 - 9 x + 113 x^{2}$ |
| Frobenius angles: | $\pm0.360863062134$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-371}) \) |
| Galois group: | $C_2$ |
| Jacobians: | $8$ |
| Isomorphism classes: | 8 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $1$ |
| Slopes: | $[0, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $105$ | $12915$ | $1445220$ | $163051875$ | $18424130025$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $105$ | $12915$ | $1445220$ | $163051875$ | $18424130025$ | $2081949246720$ | $235260550551705$ | $26584442234791875$ | $3004041940452538020$ | $339456738979889529075$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 8 curves (of which 0 are hyperelliptic):
- $y^2=x^3+20 x+60$
- $y^2=x^3+86 x+86$
- $y^2=x^3+104 x+104$
- $y^2=x^3+73 x+106$
- $y^2=x^3+39 x+4$
- $y^2=x^3+23 x+69$
- $y^2=x^3+87 x+87$
- $y^2=x^3+29 x+29$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{113}$.
Endomorphism algebra over $\F_{113}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-371}) \). |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 1.113.j | $2$ | (not in LMFDB) |