| 18.4.390877006486250192896.1 |
x18 - 3x16 - 2x14 + 12x12 - 7x10 - 11x8 + 5x6 + x4 - 5x2 + 1 |
\( -\,2^{24}\cdot 13^{12} \) |
$S_3\times A_4$ (as 18T32) |
Trivial
|
| 18.4.2426051245220667850752.1 |
x18 - 6x16 + 18x14 - 38x12 + 57x10 - 60x8 + 37x6 + 6x4 - 24x2 + 8 |
\( -\,2^{33}\cdot 3^{24} \) |
$S_3\times A_4$ (as 18T32) |
Trivial
|
| 18.0.60894079274386484071197871.1 |
x18 + x16 - 8x15 + 6x14 - 14x13 + 40x12 - 39x11 + 68x10 - 183x9 + 24x8 - 152x7 + 728x6 + 336x5 + 96x4 - 704x3 + 256x + 512 |
\( -\,19^{12}\cdot 31^{7} \) |
$S_3\times A_4$ (as 18T32) |
Trivial
(GRH)
|
| 18.6.109820174565148398342033408.1 |
x18 - 6x17 + 18x16 - 44x15 + 87x14 - 150x13 + 203x12 - 168x11 - 153x10 + 738x9 - 1548x8 + 2748x7 - 4144x6 + 5268x5 - 5283x4 + 2332x3 - 225x2 - 18x + 1 |
\( 2^{12}\cdot 3^{24}\cdot 37^{7} \) |
$S_3\times A_4$ (as 18T32) |
Trivial
(GRH)
|
| 18.0.6151277639590133348421074944.1 |
x18 + 28x16 + 337x14 + 2245x12 + 8710x10 + 18160x8 + 14152x6 - 5952x4 - 5952x2 + 1984 |
\( -\,2^{18}\cdot 31^{15} \) |
$S_3\times A_4$ (as 18T32) |
$[2, 4]$
(GRH)
|
| 18.6.60719765548297125888000000000.1 |
x18 - 18x16 - 30x15 + 81x14 + 342x13 + 351x12 - 738x11 - 2331x10 - 1444x9 + 3294x8 + 7542x7 + 5634x6 - 2952x5 - 8595x4 - 7212x3 - 2529x2 + 3204x + 2699 |
\( 2^{24}\cdot 3^{32}\cdot 5^{9} \) |
$S_3\times A_4$ (as 18T32) |
$[2]$
(GRH)
|
| 18.18.61912113497337313434142287855497.1 |
x18 - x17 - 52x16 + 34x15 + 965x14 - 493x13 - 7829x12 + 5632x11 + 29599x10 - 32926x9 - 39622x8 + 72195x7 - 19306x6 - 14542x5 + 6730x4 - 229x3 - 151x2 + 5x + 1 |
\( 11^{7}\cdot 43^{15} \) |
$S_3\times A_4$ (as 18T32) |
Trivial
(GRH)
|
| 18.18.2419590774370246153179126774059008.1 |
x18 - 2x17 - 40x16 + 12x15 + 554x14 + 321x13 - 3409x12 - 3886x11 + 9240x10 + 15122x9 - 7993x8 - 21840x7 - 3261x6 + 7458x5 + 1322x4 - 765x3 - 115x2 + 17x + 1 |
\( 2^{12}\cdot 11^{6}\cdot 37^{15} \) |
$S_3\times A_4$ (as 18T32) |
$[2]$
(GRH)
|