Normalized defining polynomial
\( x^{18} - 18 x^{16} - 30 x^{15} + 81 x^{14} + 342 x^{13} + 351 x^{12} - 738 x^{11} - 2331 x^{10} - 1444 x^{9} + 3294 x^{8} + 7542 x^{7} + 5634 x^{6} - 2952 x^{5} - 8595 x^{4} - 7212 x^{3} - 2529 x^{2} + 3204 x + 2699 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(60719765548297125888000000000=2^{24}\cdot 3^{32}\cdot 5^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $39.73$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{9} - \frac{1}{3} a^{6} - \frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{15} a^{14} + \frac{1}{15} a^{13} + \frac{2}{15} a^{12} + \frac{2}{15} a^{11} + \frac{1}{15} a^{10} - \frac{1}{5} a^{9} + \frac{7}{15} a^{8} + \frac{1}{15} a^{7} - \frac{1}{15} a^{6} + \frac{4}{15} a^{5} + \frac{1}{5} a^{4} + \frac{4}{15} a^{3} - \frac{1}{3} a^{2} - \frac{7}{15} a - \frac{2}{5}$, $\frac{1}{15} a^{15} + \frac{1}{15} a^{13} - \frac{1}{15} a^{11} + \frac{1}{15} a^{10} + \frac{4}{15} a^{8} + \frac{1}{5} a^{7} + \frac{1}{3} a^{6} + \frac{4}{15} a^{5} + \frac{1}{15} a^{4} - \frac{4}{15} a^{3} + \frac{1}{5} a^{2} + \frac{2}{5} a + \frac{1}{15}$, $\frac{1}{75} a^{16} - \frac{2}{75} a^{15} - \frac{8}{75} a^{13} - \frac{1}{25} a^{12} + \frac{11}{75} a^{11} + \frac{4}{25} a^{10} - \frac{8}{75} a^{9} + \frac{1}{25} a^{8} + \frac{13}{75} a^{7} + \frac{7}{15} a^{6} + \frac{29}{75} a^{5} - \frac{3}{25} a^{4} - \frac{1}{25} a^{3} + \frac{2}{15} a^{2} - \frac{8}{25} a + \frac{3}{25}$, $\frac{1}{4935807115250729814387167025} a^{17} + \frac{6135259645990156787553}{1645269038416909938129055675} a^{16} - \frac{48220396542676908507409942}{4935807115250729814387167025} a^{15} + \frac{123773637660807439466084192}{4935807115250729814387167025} a^{14} - \frac{54504939042780786535016111}{4935807115250729814387167025} a^{13} + \frac{55408757400686610877314326}{1645269038416909938129055675} a^{12} - \frac{468645999837613071604413497}{4935807115250729814387167025} a^{11} + \frac{215474826484190084122986618}{1645269038416909938129055675} a^{10} + \frac{450122453098776113613556378}{987161423050145962877433405} a^{9} - \frac{386503121904435966276863159}{4935807115250729814387167025} a^{8} + \frac{66960327093893270402556031}{1645269038416909938129055675} a^{7} - \frac{523606399628694266687514911}{4935807115250729814387167025} a^{6} + \frac{318662269372849947788063021}{987161423050145962877433405} a^{5} - \frac{134218664916759553461213399}{1645269038416909938129055675} a^{4} + \frac{541589344342532023352627819}{1645269038416909938129055675} a^{3} - \frac{445748135437108804605238008}{1645269038416909938129055675} a^{2} - \frac{1637528119471119189892099}{11613663800589952504440393} a + \frac{391135614736006742876142443}{1645269038416909938129055675}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 17244009.6923 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\times A_4$ (as 18T32):
| A solvable group of order 72 |
| The 12 conjugacy class representatives for $S_3\times A_4$ |
| Character table for $S_3\times A_4$ |
Intermediate fields
| \(\Q(\zeta_{9})^+\), 3.3.1620.1, 6.2.52488000.5, 9.9.344373768000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $5$ | 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |