Normalized defining polynomial
\( x^{18} - 2 x^{17} - 40 x^{16} + 12 x^{15} + 554 x^{14} + 321 x^{13} - 3409 x^{12} - 3886 x^{11} + 9240 x^{10} + 15122 x^{9} - 7993 x^{8} - 21840 x^{7} - 3261 x^{6} + 7458 x^{5} + 1322 x^{4} - 765 x^{3} - 115 x^{2} + 17 x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2419590774370246153179126774059008=2^{12}\cdot 11^{6}\cdot 37^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $71.56$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{3} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{4} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{9} a^{14} + \frac{1}{9} a^{12} + \frac{1}{9} a^{11} + \frac{1}{9} a^{10} + \frac{1}{9} a^{8} - \frac{2}{9} a^{7} - \frac{4}{9} a^{6} - \frac{2}{9} a^{5} - \frac{1}{9} a^{4} + \frac{2}{9} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{4}{9}$, $\frac{1}{9} a^{15} + \frac{1}{9} a^{13} + \frac{1}{9} a^{12} + \frac{1}{9} a^{11} + \frac{1}{9} a^{9} - \frac{2}{9} a^{8} - \frac{4}{9} a^{7} - \frac{2}{9} a^{6} - \frac{1}{9} a^{5} + \frac{2}{9} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{4}{9} a$, $\frac{1}{9} a^{16} + \frac{1}{9} a^{13} - \frac{1}{9} a^{11} - \frac{2}{9} a^{9} + \frac{4}{9} a^{8} + \frac{1}{3} a^{6} + \frac{4}{9} a^{5} + \frac{4}{9} a^{4} + \frac{1}{9} a^{3} + \frac{2}{9} a^{2} - \frac{1}{3} a + \frac{4}{9}$, $\frac{1}{277200801} a^{17} + \frac{14802502}{277200801} a^{16} + \frac{4504157}{92400267} a^{15} + \frac{3351277}{92400267} a^{14} + \frac{32357482}{277200801} a^{13} + \frac{34697584}{277200801} a^{12} - \frac{39384944}{277200801} a^{11} + \frac{9440749}{92400267} a^{10} - \frac{103321834}{277200801} a^{9} - \frac{14812271}{92400267} a^{8} + \frac{54123578}{277200801} a^{7} + \frac{79971188}{277200801} a^{6} + \frac{37216324}{277200801} a^{5} - \frac{4687118}{30800089} a^{4} - \frac{138136856}{277200801} a^{3} + \frac{129487688}{277200801} a^{2} - \frac{94651286}{277200801} a + \frac{112132379}{277200801}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 53195334384.7 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\times A_4$ (as 18T32):
| A solvable group of order 72 |
| The 12 conjugacy class representatives for $S_3\times A_4$ |
| Character table for $S_3\times A_4$ |
Intermediate fields
| 3.3.1369.1, 3.3.148.1, 6.6.8390618797.1, 9.9.6075640136512.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $11$ | 11.6.3.2 | $x^{6} - 121 x^{2} + 3993$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 11.6.0.1 | $x^{6} + x^{2} - 2 x + 8$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 11.6.3.1 | $x^{6} - 22 x^{4} + 121 x^{2} - 11979$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $37$ | 37.6.5.1 | $x^{6} - 37$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 37.6.5.1 | $x^{6} - 37$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 37.6.5.1 | $x^{6} - 37$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |