Normalized defining polynomial
\( x^{18} - 6 x^{17} + 18 x^{16} - 44 x^{15} + 87 x^{14} - 150 x^{13} + 203 x^{12} - 168 x^{11} - 153 x^{10} + 738 x^{9} - 1548 x^{8} + 2748 x^{7} - 4144 x^{6} + 5268 x^{5} - 5283 x^{4} + 2332 x^{3} - 225 x^{2} - 18 x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(109820174565148398342033408=2^{12}\cdot 3^{24}\cdot 37^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $27.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{13} - \frac{1}{4} a^{12} - \frac{1}{2} a^{8} - \frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} + \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{308} a^{16} - \frac{8}{77} a^{15} + \frac{65}{308} a^{14} + \frac{5}{28} a^{13} - \frac{2}{77} a^{12} - \frac{37}{154} a^{11} + \frac{1}{22} a^{10} - \frac{19}{154} a^{9} - \frac{145}{308} a^{8} + \frac{75}{154} a^{7} - \frac{39}{308} a^{6} + \frac{7}{44} a^{5} + \frac{95}{308} a^{4} - \frac{4}{77} a^{3} - \frac{5}{28} a^{2} - \frac{79}{308} a - \frac{59}{154}$, $\frac{1}{20314404060517344713012} a^{17} + \frac{407858987567625007}{10157202030258672356506} a^{16} - \frac{438622212068272395501}{5078601015129336178253} a^{15} - \frac{2398902558442073623117}{20314404060517344713012} a^{14} + \frac{336606914781007608883}{2902057722931049244716} a^{13} - \frac{1876667198690869015917}{20314404060517344713012} a^{12} - \frac{1259256549863874532675}{10157202030258672356506} a^{11} - \frac{1173435143291265039611}{5078601015129336178253} a^{10} + \frac{2499765560128675836975}{20314404060517344713012} a^{9} - \frac{1892990712961057332229}{5078601015129336178253} a^{8} + \frac{305798451162548166465}{725514430732762311179} a^{7} - \frac{5703786868607391651853}{20314404060517344713012} a^{6} - \frac{304979048678501230697}{5078601015129336178253} a^{5} - \frac{8743850782786390712069}{20314404060517344713012} a^{4} + \frac{1985276602738949130595}{10157202030258672356506} a^{3} - \frac{9713026188685686925621}{20314404060517344713012} a^{2} - \frac{8646802780488214643137}{20314404060517344713012} a - \frac{5275467544530218756869}{20314404060517344713012}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1206805.78255 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\times A_4$ (as 18T32):
| A solvable group of order 72 |
| The 12 conjugacy class representatives for $S_3\times A_4$ |
| Character table for $S_3\times A_4$ |
Intermediate fields
| \(\Q(\zeta_{9})^+\), 3.3.148.1, 6.2.242757.1, 9.9.1722821182272.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ |
| 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ | |
| 37 | Data not computed | ||||||