Note: Search results may be incomplete. Given $p$-adic completions contain an unramified field and completions are only searched for ramified primes.
Refine search
| Label | Polynomial | Discriminant | Galois group | Class group |
|---|---|---|---|---|
| 4.0.2133.1 | $x^{4} - 2 x^{3} - 6 x^{2} + 7 x + 13$ | $3^{3}\cdot 79$ | $D_{4}$ (as 4T3) | trivial |
| 4.0.4345.1 | $x^{4} - x^{3} + x^{2} - 2 x + 3$ | $5\cdot 11\cdot 79$ | $S_4$ (as 4T5) | trivial |
| 4.0.4977.1 | $x^{4} - x^{3} - 10 x^{2} + x + 37$ | $3^{2}\cdot 7\cdot 79$ | $D_{4}$ (as 4T3) | trivial |
| 4.0.4977.2 | $x^{4} - x^{3} - 11 x^{2} + 6 x + 36$ | $3^{2}\cdot 7\cdot 79$ | $D_{4}$ (as 4T3) | trivial |
| 4.0.5056.1 | $x^{4} - 2 x^{3} + x^{2} - 4 x + 6$ | $2^{6}\cdot 79$ | $S_4$ (as 4T5) | trivial |
| 4.0.5056.2 | $x^{4} - 2 x^{3} + 5 x^{2} - 2 x + 3$ | $2^{6}\cdot 79$ | $S_4$ (as 4T5) | trivial |
| 4.0.5925.1 | $x^{4} - x^{3} - 6 x + 9$ | $3\cdot 5^{2}\cdot 79$ | $S_4$ (as 4T5) | trivial |
| 4.0.8532.1 | $x^{4} - x^{3} + 3 x^{2} - 5 x + 8$ | $2^{2}\cdot 3^{3}\cdot 79$ | $S_4$ (as 4T5) | trivial |
| 4.2.9875.1 | $x^{4} - x^{3} - 4 x^{2} + 14 x - 29$ | $-\,5^{3}\cdot 79$ | $D_{4}$ (as 4T3) | trivial |
| 4.0.11376.1 | $x^{4} - 17 x^{2} + 79$ | $2^{4}\cdot 3^{2}\cdot 79$ | $D_{4}$ (as 4T3) | trivial |
| 4.2.13351.1 | $x^{4} - x^{3} - 2 x^{2} - 7 x - 3$ | $-\,13^{2}\cdot 79$ | $D_{4}$ (as 4T3) | trivial |
| 4.0.13509.2 | $x^{4} - x^{3} + 19 x^{2} - 15 x + 93$ | $3^{2}\cdot 19\cdot 79$ | $D_{4}$ (as 4T3) | trivial |
| 4.0.15089.1 | $x^{4} - x^{3} + 3 x^{2} + 2 x + 3$ | $79\cdot 191$ | $S_4$ (as 4T5) | $[3]$ |
| 4.0.15484.1 | $x^{4} - x^{3} - 7 x^{2} + 8 x + 22$ | $2^{2}\cdot 7^{2}\cdot 79$ | $D_{4}$ (as 4T3) | trivial |
| 4.2.16827.1 | $x^{4} - x^{3} - 2 x^{2} + 6 x - 1$ | $-\,3\cdot 71\cdot 79$ | $S_4$ (as 4T5) | trivial |
| 4.2.17064.1 | $x^{4} - 3 x^{2} - 4 x - 6$ | $-\,2^{3}\cdot 3^{3}\cdot 79$ | $S_4$ (as 4T5) | trivial |
| 4.2.19355.1 | $x^{4} - x^{3} - 3 x^{2} + 5 x + 5$ | $-\,5\cdot 7^{2}\cdot 79$ | $S_4$ (as 4T5) | trivial |
| 4.2.20224.1 | $x^{4} - 8 x^{2} - 16 x - 23$ | $-\,2^{8}\cdot 79$ | $D_{4}$ (as 4T3) | trivial |
| 4.2.20303.1 | $x^{4} - 2 x^{3} + 5 x^{2} - 3 x - 2$ | $-\,79\cdot 257$ | $S_4$ (as 4T5) | trivial |
| 4.2.20619.1 | $x^{4} - 4 x^{2} - 3 x + 4$ | $-\,3^{2}\cdot 29\cdot 79$ | $S_4$ (as 4T5) | trivial |
| 4.4.21725.1 | $x^{4} - x^{3} - 15 x^{2} + 7 x + 49$ | $5^{2}\cdot 11\cdot 79$ | $D_{4}$ (as 4T3) | trivial |
| 4.0.22041.2 | $x^{4} - x^{3} + 23 x^{2} - 2 x + 148$ | $3^{2}\cdot 31\cdot 79$ | $D_{4}$ (as 4T3) | trivial |
| 4.0.24648.1 | $x^{4} - x^{3} + 2 x^{2} + 8 x + 16$ | $2^{3}\cdot 3\cdot 13\cdot 79$ | $S_4$ (as 4T5) | trivial |
| 4.2.24727.1 | $x^{4} - 5 x^{2} - 14 x - 5$ | $-\,79\cdot 313$ | $S_4$ (as 4T5) | trivial |
| 4.2.26623.1 | $x^{4} + 5 x^{2} - 3 x - 1$ | $-\,79\cdot 337$ | $S_4$ (as 4T5) | trivial |
| 4.0.28361.1 | $x^{4} - x^{3} - x^{2} + 4 x + 5$ | $79\cdot 359$ | $S_4$ (as 4T5) | trivial |
| 4.4.28677.1 | $x^{4} - x^{3} - 8 x^{2} + 12 x - 1$ | $3\cdot 11^{2}\cdot 79$ | $S_4$ (as 4T5) | trivial |
| 4.2.29467.1 | $x^{4} - x^{3} - 5 x^{2} - 2 x + 8$ | $-\,79\cdot 373$ | $S_4$ (as 4T5) | trivial |
| 4.0.30968.1 | $x^{4} - x^{3} - 9 x^{2} - 5 x + 46$ | $2^{3}\cdot 7^{2}\cdot 79$ | $D_{4}$ (as 4T3) | trivial |
| 4.2.31600.1 | $x^{4} + 2 x^{2} - 79$ | $-\,2^{4}\cdot 5^{2}\cdot 79$ | $D_{4}$ (as 4T3) | trivial |
| 4.0.31600.1 | $x^{4} + 19 x^{2} + 79$ | $2^{4}\cdot 5^{2}\cdot 79$ | $D_{4}$ (as 4T3) | $[4]$ |
| 4.2.32864.1 | $x^{4} - 3 x^{2} - 6 x + 10$ | $-\,2^{5}\cdot 13\cdot 79$ | $S_4$ (as 4T5) | trivial |
| 4.2.33259.1 | $x^{4} - 5 x - 4$ | $-\,79\cdot 421$ | $S_4$ (as 4T5) | trivial |
| 4.2.34128.1 | $x^{4} + 3 x^{2} - 8 x + 3$ | $-\,2^{4}\cdot 3^{3}\cdot 79$ | $S_4$ (as 4T5) | trivial |
| 4.2.34128.2 | $x^{4} - 3 x^{2} - 12 x + 15$ | $-\,2^{4}\cdot 3^{3}\cdot 79$ | $S_4$ (as 4T5) | trivial |
| 4.0.35392.1 | $x^{4} - 2 x^{3} + 13 x^{2} - 6 x + 41$ | $2^{6}\cdot 7\cdot 79$ | $D_{4}$ (as 4T3) | $[2]$ |
| 4.4.35392.1 | $x^{4} - 2 x^{3} - 13 x^{2} + 14 x + 31$ | $2^{6}\cdot 7\cdot 79$ | $D_{4}$ (as 4T3) | trivial |
| 4.4.37525.1 | $x^{4} - 2 x^{3} - 18 x^{2} + 19 x + 89$ | $5^{2}\cdot 19\cdot 79$ | $D_{4}$ (as 4T3) | trivial |
| 4.0.42581.2 | $x^{4} - 2 x^{3} + 8 x^{2} - 7 x + 56$ | $7^{2}\cdot 11\cdot 79$ | $D_{4}$ (as 4T3) | trivial |
| 4.2.44635.2 | $x^{4} - 8 x^{2} - 15 x - 10$ | $-\,5\cdot 79\cdot 113$ | $S_4$ (as 4T5) | trivial |
| 4.2.44635.3 | $x^{4} - x^{3} - 8 x^{2} + 20 x - 15$ | $-\,5\cdot 79\cdot 113$ | $S_4$ (as 4T5) | trivial |
| 4.2.45267.1 | $x^{4} - x^{3} + 2 x^{2} - 6 x - 9$ | $-\,3\cdot 79\cdot 191$ | $S_4$ (as 4T5) | trivial |
| 4.0.45504.1 | $x^{4} - 34 x^{2} + 316$ | $2^{6}\cdot 3^{2}\cdot 79$ | $D_{4}$ (as 4T3) | trivial |
| 4.0.47637.2 | $x^{4} - x^{3} - 31 x^{2} + 31 x + 331$ | $3^{2}\cdot 67\cdot 79$ | $D_{4}$ (as 4T3) | trivial |
| 4.2.49059.1 | $x^{4} - x^{3} - 6 x^{2} + 6 x - 3$ | $-\,3^{3}\cdot 23\cdot 79$ | $S_4$ (as 4T5) | trivial |
| 4.2.49296.1 | $x^{4} - 2 x^{3} - x^{2} - 12 x - 15$ | $-\,2^{4}\cdot 3\cdot 13\cdot 79$ | $S_4$ (as 4T5) | trivial |
| 4.2.51508.1 | $x^{4} - 5 x^{2} - 4 x - 20$ | $-\,2^{2}\cdot 79\cdot 163$ | $S_4$ (as 4T5) | trivial |
| 4.0.53325.1 | $x^{4} - 2 x^{3} - 36 x^{2} + 37 x + 361$ | $3^{3}\cdot 5^{2}\cdot 79$ | $D_{4}$ (as 4T3) | $[2]$ |
| 4.2.54115.1 | $x^{4} - x^{3} - 2 x^{2} - 5$ | $-\,5\cdot 79\cdot 137$ | $S_4$ (as 4T5) | trivial |
| 4.2.54668.1 | $x^{4} - 2 x^{3} - 2 x^{2} - 6 x - 16$ | $-\,2^{2}\cdot 79\cdot 173$ | $S_4$ (as 4T5) | trivial |