Normalized defining polynomial
\( x^{4} - 2x^{3} - 6x^{2} + 7x + 13 \)
Invariants
| Degree: | $4$ |
| |
| Signature: | $[0, 2]$ |
| |
| Discriminant: |
\(2133\)
\(\medspace = 3^{3}\cdot 79\)
|
| |
| Root discriminant: | \(6.80\) |
| |
| Galois root discriminant: | $3^{3/4}79^{1/2}\approx 20.260701897856944$ | ||
| Ramified primes: |
\(3\), \(79\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{237}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | \(\Q(\sqrt{-3}) \) | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$
| Monogenic: | Yes | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $1$ |
| |
| Torsion generator: |
\( a^{2} - a - 3 \)
(order $6$)
|
| |
| Fundamental unit: |
$a^{3}-6a-6$
|
| |
| Regulator: | \( 3.86222722813 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{2}\cdot 3.86222722813 \cdot 1}{6\cdot\sqrt{2133}}\cr\approx \mathstrut & 0.550238380005 \end{aligned}\]
Galois group
| A solvable group of order 8 |
| The 5 conjugacy class representatives for $D_{4}$ |
| Character table for $D_{4}$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | 8.0.28394609049.1 |
| Degree 4 sibling: | 4.2.168507.2 |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.4.0.1}{4} }$ | R | ${\href{/padicField/5.4.0.1}{4} }$ | ${\href{/padicField/7.2.0.1}{2} }{,}\,{\href{/padicField/7.1.0.1}{1} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }$ | ${\href{/padicField/13.1.0.1}{1} }^{4}$ | ${\href{/padicField/17.2.0.1}{2} }^{2}$ | ${\href{/padicField/19.1.0.1}{1} }^{4}$ | ${\href{/padicField/23.4.0.1}{4} }$ | ${\href{/padicField/29.2.0.1}{2} }^{2}$ | ${\href{/padicField/31.2.0.1}{2} }^{2}$ | ${\href{/padicField/37.2.0.1}{2} }{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ | ${\href{/padicField/41.2.0.1}{2} }^{2}$ | ${\href{/padicField/43.2.0.1}{2} }{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ | ${\href{/padicField/47.2.0.1}{2} }^{2}$ | ${\href{/padicField/53.2.0.1}{2} }^{2}$ | ${\href{/padicField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(3\)
| 3.1.4.3a1.1 | $x^{4} + 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $$[\ ]_{4}^{2}$$ |
|
\(79\)
| 79.1.2.1a1.2 | $x^{2} + 237$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 79.2.1.0a1.1 | $x^{2} + 78 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
Artin representations
| Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| *8 | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
| *8 | 1.3.2t1.a.a | $1$ | $ 3 $ | \(\Q(\sqrt{-3}) \) | $C_2$ (as 2T1) | $1$ | $-1$ |
| 1.237.2t1.a.a | $1$ | $ 3 \cdot 79 $ | \(\Q(\sqrt{237}) \) | $C_2$ (as 2T1) | $1$ | $1$ | |
| 1.79.2t1.a.a | $1$ | $ 79 $ | \(\Q(\sqrt{-79}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
| *8 | 2.711.4t3.c.a | $2$ | $ 3^{2} \cdot 79 $ | 4.0.2133.1 | $D_{4}$ (as 4T3) | $1$ | $0$ |