Normalized defining polynomial
\( x^{4} - x^{3} - 2x^{2} - 7x - 3 \)
Invariants
| Degree: | $4$ |
| |
| Signature: | $[2, 1]$ |
| |
| Discriminant: |
\(-13351\)
\(\medspace = -\,13^{2}\cdot 79\)
|
| |
| Root discriminant: | \(10.75\) |
| |
| Galois root discriminant: | $13^{1/2}79^{1/2}\approx 32.046840717924134$ | ||
| Ramified primes: |
\(13\), \(79\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-79}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2}a^{3}-\frac{1}{2}$
| Monogenic: | No | |
| Index: | $2$ | |
| Inessential primes: | $2$ |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $2$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{1}{2}a^{3}-a^{2}-a-\frac{7}{2}$, $\frac{1}{2}a^{3}+a+\frac{1}{2}$
|
| |
| Regulator: | \( 7.72158948671 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{1}\cdot 7.72158948671 \cdot 1}{2\cdot\sqrt{13351}}\cr\approx \mathstrut & 0.839768683527 \end{aligned}\]
Galois group
| A solvable group of order 8 |
| The 5 conjugacy class representatives for $D_{4}$ |
| Character table for $D_{4}$ |
Intermediate fields
| \(\Q(\sqrt{13}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | 8.0.1112453263441.1 |
| Degree 4 sibling: | 4.0.81133.1 |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.2.0.1}{2} }^{2}$ | ${\href{/padicField/3.2.0.1}{2} }{,}\,{\href{/padicField/3.1.0.1}{1} }^{2}$ | ${\href{/padicField/5.2.0.1}{2} }^{2}$ | ${\href{/padicField/7.4.0.1}{4} }$ | ${\href{/padicField/11.2.0.1}{2} }^{2}$ | R | ${\href{/padicField/17.2.0.1}{2} }{,}\,{\href{/padicField/17.1.0.1}{1} }^{2}$ | ${\href{/padicField/19.2.0.1}{2} }^{2}$ | ${\href{/padicField/23.2.0.1}{2} }^{2}$ | ${\href{/padicField/29.2.0.1}{2} }{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | ${\href{/padicField/31.2.0.1}{2} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }$ | ${\href{/padicField/41.4.0.1}{4} }$ | ${\href{/padicField/43.2.0.1}{2} }{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ | ${\href{/padicField/47.4.0.1}{4} }$ | ${\href{/padicField/53.2.0.1}{2} }{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(13\)
| 13.2.2.2a1.2 | $x^{4} + 24 x^{3} + 148 x^{2} + 48 x + 17$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |
|
\(79\)
| 79.2.1.0a1.1 | $x^{2} + 78 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
| 79.1.2.1a1.2 | $x^{2} + 237$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
Artin representations
| Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| *8 | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
| *8 | 1.13.2t1.a.a | $1$ | $ 13 $ | \(\Q(\sqrt{13}) \) | $C_2$ (as 2T1) | $1$ | $1$ |
| 1.79.2t1.a.a | $1$ | $ 79 $ | \(\Q(\sqrt{-79}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
| 1.1027.2t1.a.a | $1$ | $ 13 \cdot 79 $ | \(\Q(\sqrt{-1027}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
| *8 | 2.1027.4t3.b.a | $2$ | $ 13 \cdot 79 $ | 4.2.13351.1 | $D_{4}$ (as 4T3) | $1$ | $0$ |