Normalized defining polynomial
\( x^{9} - x^{8} - 16x^{7} + 11x^{6} + 66x^{5} - 32x^{4} - 73x^{3} + 7x^{2} + 7x - 1 \)
Invariants
Degree: | $9$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[9, 0]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(3512479453921\) \(\medspace = 37^{8}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(24.77\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $37^{8/9}\approx 24.771772796308063$ | ||
Ramified primes: | \(37\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Gal(K/\Q) }$: | $9$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(37\) | ||
Dirichlet character group: | $\lbrace$$\chi_{37}(1,·)$, $\chi_{37}(34,·)$, $\chi_{37}(33,·)$, $\chi_{37}(9,·)$, $\chi_{37}(10,·)$, $\chi_{37}(7,·)$, $\chi_{37}(12,·)$, $\chi_{37}(16,·)$, $\chi_{37}(26,·)$$\rbrace$ | ||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{1333}a^{8}-\frac{547}{1333}a^{7}+\frac{54}{1333}a^{6}-\frac{147}{1333}a^{5}+\frac{348}{1333}a^{4}+\frac{579}{1333}a^{3}-\frac{286}{1333}a^{2}+\frac{202}{1333}a+\frac{354}{1333}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $8$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{762}{1333}a^{8}-\frac{918}{1333}a^{7}-\frac{12172}{1333}a^{6}+\frac{10622}{1333}a^{5}+\frac{50563}{1333}a^{4}-\frac{30684}{1333}a^{3}-\frac{55306}{1333}a^{2}+\frac{7294}{1333}a+\frac{3148}{1333}$, $\frac{549}{1333}a^{8}-\frac{378}{1333}a^{7}-\frac{9011}{1333}a^{6}+\frac{3276}{1333}a^{5}+\frac{39090}{1333}a^{4}-\frac{6048}{1333}a^{3}-\frac{49041}{1333}a^{2}-\frac{7739}{1333}a+\frac{5060}{1333}$, $\frac{571}{1333}a^{8}-\frac{415}{1333}a^{7}-\frac{9156}{1333}a^{6}+\frac{4041}{1333}a^{5}+\frac{37415}{1333}a^{4}-\frac{11972}{1333}a^{3}-\frac{42003}{1333}a^{2}+\frac{2037}{1333}a+\frac{4850}{1333}$, $\frac{1067}{1333}a^{8}-\frac{1128}{1333}a^{7}-\frac{17030}{1333}a^{6}+\frac{12442}{1333}a^{5}+\frac{70058}{1333}a^{4}-\frac{34044}{1333}a^{3}-\frac{75886}{1333}a^{2}-\frac{412}{1333}a+\frac{4478}{1333}$, $\frac{1330}{1333}a^{8}-\frac{1025}{1333}a^{7}-\frac{21490}{1333}a^{6}+\frac{9772}{1333}a^{5}+\frac{89600}{1333}a^{4}-\frac{23065}{1333}a^{3}-\frac{100450}{1333}a^{2}-\frac{11270}{1333}a+\frac{4270}{1333}$, $\frac{915}{1333}a^{8}-\frac{630}{1333}a^{7}-\frac{14574}{1333}a^{6}+\frac{5460}{1333}a^{5}+\frac{58485}{1333}a^{4}-\frac{11413}{1333}a^{3}-\frac{61740}{1333}a^{2}-\frac{11121}{1333}a+\frac{3990}{1333}$, $\frac{369}{1333}a^{8}-\frac{560}{1333}a^{7}-\frac{5401}{1333}a^{6}+\frac{7075}{1333}a^{5}+\frac{17773}{1333}a^{4}-\frac{24956}{1333}a^{3}-\frac{8225}{1333}a^{2}+\frac{15886}{1333}a-\frac{2674}{1333}$, $\frac{698}{1333}a^{8}-\frac{568}{1333}a^{7}-\frac{11629}{1333}a^{6}+\frac{5367}{1333}a^{5}+\frac{52285}{1333}a^{4}-\frac{9088}{1333}a^{3}-\frac{67661}{1333}a^{2}-\frac{16298}{1333}a+\frac{5819}{1333}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 1598.24730552 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{9}\cdot(2\pi)^{0}\cdot 1598.24730552 \cdot 1}{2\cdot\sqrt{3512479453921}}\cr\approx \mathstrut & 0.218311719331 \end{aligned}\]
Galois group
A cyclic group of order 9 |
The 9 conjugacy class representatives for $C_9$ |
Character table for $C_9$ |
Intermediate fields
3.3.1369.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.9.0.1}{9} }$ | ${\href{/padicField/3.9.0.1}{9} }$ | ${\href{/padicField/5.9.0.1}{9} }$ | ${\href{/padicField/7.9.0.1}{9} }$ | ${\href{/padicField/11.3.0.1}{3} }^{3}$ | ${\href{/padicField/13.9.0.1}{9} }$ | ${\href{/padicField/17.9.0.1}{9} }$ | ${\href{/padicField/19.9.0.1}{9} }$ | ${\href{/padicField/23.3.0.1}{3} }^{3}$ | ${\href{/padicField/29.3.0.1}{3} }^{3}$ | ${\href{/padicField/31.1.0.1}{1} }^{9}$ | R | ${\href{/padicField/41.9.0.1}{9} }$ | ${\href{/padicField/43.1.0.1}{1} }^{9}$ | ${\href{/padicField/47.3.0.1}{3} }^{3}$ | ${\href{/padicField/53.9.0.1}{9} }$ | ${\href{/padicField/59.9.0.1}{9} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(37\) | 37.9.8.1 | $x^{9} + 37$ | $9$ | $1$ | $8$ | $C_9$ | $[\ ]_{9}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
* | 1.37.9t1.a.a | $1$ | $ 37 $ | 9.9.3512479453921.1 | $C_9$ (as 9T1) | $0$ | $1$ |
* | 1.37.9t1.a.b | $1$ | $ 37 $ | 9.9.3512479453921.1 | $C_9$ (as 9T1) | $0$ | $1$ |
* | 1.37.3t1.a.a | $1$ | $ 37 $ | 3.3.1369.1 | $C_3$ (as 3T1) | $0$ | $1$ |
* | 1.37.9t1.a.c | $1$ | $ 37 $ | 9.9.3512479453921.1 | $C_9$ (as 9T1) | $0$ | $1$ |
* | 1.37.9t1.a.d | $1$ | $ 37 $ | 9.9.3512479453921.1 | $C_9$ (as 9T1) | $0$ | $1$ |
* | 1.37.3t1.a.b | $1$ | $ 37 $ | 3.3.1369.1 | $C_3$ (as 3T1) | $0$ | $1$ |
* | 1.37.9t1.a.e | $1$ | $ 37 $ | 9.9.3512479453921.1 | $C_9$ (as 9T1) | $0$ | $1$ |
* | 1.37.9t1.a.f | $1$ | $ 37 $ | 9.9.3512479453921.1 | $C_9$ (as 9T1) | $0$ | $1$ |