Properties

Label 9.9.147...289.32
Degree $9$
Signature $[9, 0]$
Discriminant $1.476\times 10^{26}$
Root discriminant \(808.47\)
Ramified primes $3,7,13$
Class number $27$ (GRH)
Class group [3, 9] (GRH)
Galois group $C_9:C_3$ (as 9T6)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^9 - 819*x^7 - 3276*x^6 + 194103*x^5 + 1199016*x^4 - 13831545*x^3 - 95085900*x^2 + 299344500*x + 2144870000)
 
gp: K = bnfinit(y^9 - 819*y^7 - 3276*y^6 + 194103*y^5 + 1199016*y^4 - 13831545*y^3 - 95085900*y^2 + 299344500*y + 2144870000, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^9 - 819*x^7 - 3276*x^6 + 194103*x^5 + 1199016*x^4 - 13831545*x^3 - 95085900*x^2 + 299344500*x + 2144870000);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^9 - 819*x^7 - 3276*x^6 + 194103*x^5 + 1199016*x^4 - 13831545*x^3 - 95085900*x^2 + 299344500*x + 2144870000)
 

\( x^{9} - 819 x^{7} - 3276 x^{6} + 194103 x^{5} + 1199016 x^{4} - 13831545 x^{3} - 95085900 x^{2} + \cdots + 2144870000 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $9$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[9, 0]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(147570226003740066617015289\) \(\medspace = 3^{22}\cdot 7^{8}\cdot 13^{8}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(808.47\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $3^{22/9}7^{8/9}13^{8/9}\approx 808.4748732595972$
Ramified primes:   \(3\), \(7\), \(13\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $3$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{8}a^{4}-\frac{1}{4}a^{3}-\frac{1}{8}a^{2}+\frac{1}{4}a$, $\frac{1}{8}a^{5}-\frac{1}{8}a^{3}$, $\frac{1}{80}a^{6}-\frac{1}{16}a^{5}+\frac{1}{80}a^{4}-\frac{11}{80}a^{3}-\frac{1}{40}a^{2}+\frac{1}{5}a$, $\frac{1}{6400}a^{7}-\frac{1}{320}a^{6}+\frac{153}{3200}a^{5}+\frac{13}{800}a^{4}+\frac{1073}{6400}a^{3}-\frac{361}{1600}a^{2}+\frac{123}{320}a-\frac{3}{16}$, $\frac{1}{40\!\cdots\!00}a^{8}+\frac{4803456212257}{81\!\cdots\!00}a^{7}+\frac{10\!\cdots\!03}{20\!\cdots\!00}a^{6}-\frac{71\!\cdots\!83}{20\!\cdots\!00}a^{5}+\frac{59\!\cdots\!93}{40\!\cdots\!00}a^{4}-\frac{84\!\cdots\!79}{40\!\cdots\!00}a^{3}-\frac{128935006826729}{10\!\cdots\!00}a^{2}-\frac{781576735113637}{40\!\cdots\!20}a+\frac{101318144140337}{204457217103136}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

$C_{3}\times C_{9}$, which has order $27$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $8$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{5094449397}{421561272377600}a^{8}-\frac{13627061487}{84312254475520}a^{7}-\frac{1609602736909}{210780636188800}a^{6}+\frac{11671229681109}{210780636188800}a^{5}+\frac{636482156818701}{421561272377600}a^{4}-\frac{462571073587403}{421561272377600}a^{3}-\frac{203721257026287}{2107806361888}a^{2}-\frac{18\!\cdots\!53}{4215612723776}a-\frac{706319618526747}{1053903180944}$, $\frac{578784284271}{10\!\cdots\!00}a^{8}-\frac{348036234219}{52695159047200}a^{7}-\frac{191346248661337}{526951590472000}a^{6}+\frac{293879117176803}{131737897618000}a^{5}+\frac{78\!\cdots\!43}{10\!\cdots\!00}a^{4}-\frac{12\!\cdots\!51}{263475795236000}a^{3}-\frac{52\!\cdots\!07}{10539031809440}a^{2}-\frac{41\!\cdots\!01}{2634757952360}a+\frac{834659844317693}{65868948809}$, $\frac{17\!\cdots\!67}{20\!\cdots\!00}a^{8}+\frac{51\!\cdots\!53}{81\!\cdots\!40}a^{7}-\frac{65\!\cdots\!99}{10\!\cdots\!00}a^{6}-\frac{77\!\cdots\!71}{10\!\cdots\!00}a^{5}+\frac{21\!\cdots\!51}{20\!\cdots\!00}a^{4}+\frac{36\!\cdots\!97}{20\!\cdots\!00}a^{3}+\frac{47\!\cdots\!17}{25\!\cdots\!00}a^{2}-\frac{13\!\cdots\!57}{20\!\cdots\!60}a-\frac{24\!\cdots\!11}{102228608551568}$, $\frac{77\!\cdots\!31}{51\!\cdots\!00}a^{8}+\frac{25\!\cdots\!93}{10\!\cdots\!00}a^{7}-\frac{21\!\cdots\!07}{25\!\cdots\!00}a^{6}-\frac{47\!\cdots\!83}{25\!\cdots\!00}a^{5}-\frac{41\!\cdots\!97}{51\!\cdots\!00}a^{4}+\frac{86\!\cdots\!41}{51\!\cdots\!00}a^{3}+\frac{40\!\cdots\!59}{638928803447300}a^{2}-\frac{20\!\cdots\!61}{511143042757840}a-\frac{51\!\cdots\!91}{25557152137892}$, $\frac{84\!\cdots\!79}{10\!\cdots\!00}a^{8}+\frac{82\!\cdots\!89}{40\!\cdots\!20}a^{7}-\frac{96\!\cdots\!63}{51\!\cdots\!00}a^{6}-\frac{37\!\cdots\!27}{51\!\cdots\!00}a^{5}-\frac{17\!\cdots\!13}{10\!\cdots\!00}a^{4}+\frac{59\!\cdots\!89}{10\!\cdots\!00}a^{3}+\frac{34\!\cdots\!89}{12\!\cdots\!00}a^{2}-\frac{13\!\cdots\!77}{10\!\cdots\!80}a-\frac{37\!\cdots\!55}{51114304275784}$, $\frac{17\!\cdots\!53}{51\!\cdots\!00}a^{8}+\frac{80\!\cdots\!99}{10\!\cdots\!80}a^{7}-\frac{21\!\cdots\!91}{25\!\cdots\!00}a^{6}-\frac{36\!\cdots\!07}{12\!\cdots\!00}a^{5}-\frac{23\!\cdots\!91}{51\!\cdots\!00}a^{4}+\frac{58\!\cdots\!99}{25\!\cdots\!00}a^{3}+\frac{23\!\cdots\!97}{25\!\cdots\!00}a^{2}-\frac{13\!\cdots\!11}{255571521378920}a-\frac{32\!\cdots\!77}{12778576068946}$, $\frac{12\!\cdots\!87}{20\!\cdots\!00}a^{8}-\frac{10\!\cdots\!99}{40\!\cdots\!00}a^{7}-\frac{47\!\cdots\!39}{10\!\cdots\!00}a^{6}+\frac{13\!\cdots\!09}{10\!\cdots\!00}a^{5}+\frac{20\!\cdots\!31}{20\!\cdots\!00}a^{4}+\frac{20\!\cdots\!57}{20\!\cdots\!00}a^{3}-\frac{17\!\cdots\!07}{25\!\cdots\!00}a^{2}-\frac{10\!\cdots\!81}{20\!\cdots\!60}a+\frac{14\!\cdots\!97}{102228608551568}$, $\frac{21\!\cdots\!83}{10\!\cdots\!00}a^{8}-\frac{41\!\cdots\!81}{20\!\cdots\!00}a^{7}-\frac{19\!\cdots\!19}{12\!\cdots\!00}a^{6}+\frac{80\!\cdots\!99}{10\!\cdots\!00}a^{5}+\frac{33\!\cdots\!27}{10\!\cdots\!00}a^{4}-\frac{14\!\cdots\!37}{20\!\cdots\!00}a^{3}-\frac{11\!\cdots\!29}{51\!\cdots\!00}a^{2}+\frac{18\!\cdots\!01}{10\!\cdots\!80}a+\frac{24\!\cdots\!47}{51114304275784}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 562994976933 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{9}\cdot(2\pi)^{0}\cdot 562994976933 \cdot 27}{2\cdot\sqrt{147570226003740066617015289}}\cr\approx \mathstrut & 320.338308739702 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^9 - 819*x^7 - 3276*x^6 + 194103*x^5 + 1199016*x^4 - 13831545*x^3 - 95085900*x^2 + 299344500*x + 2144870000)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^9 - 819*x^7 - 3276*x^6 + 194103*x^5 + 1199016*x^4 - 13831545*x^3 - 95085900*x^2 + 299344500*x + 2144870000, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^9 - 819*x^7 - 3276*x^6 + 194103*x^5 + 1199016*x^4 - 13831545*x^3 - 95085900*x^2 + 299344500*x + 2144870000);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^9 - 819*x^7 - 3276*x^6 + 194103*x^5 + 1199016*x^4 - 13831545*x^3 - 95085900*x^2 + 299344500*x + 2144870000);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_9:C_3$ (as 9T6):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 27
The 11 conjugacy class representatives for $C_9:C_3$
Character table for $C_9:C_3$

Intermediate fields

3.3.670761.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Galois closure: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.1.0.1}{1} }^{9}$ R ${\href{/padicField/5.3.0.1}{3} }^{2}{,}\,{\href{/padicField/5.1.0.1}{1} }^{3}$ R ${\href{/padicField/11.9.0.1}{9} }$ R ${\href{/padicField/17.9.0.1}{9} }$ ${\href{/padicField/19.3.0.1}{3} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }^{3}$ ${\href{/padicField/23.9.0.1}{9} }$ ${\href{/padicField/29.9.0.1}{9} }$ ${\href{/padicField/31.9.0.1}{9} }$ ${\href{/padicField/37.9.0.1}{9} }$ ${\href{/padicField/41.3.0.1}{3} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }^{3}$ ${\href{/padicField/43.3.0.1}{3} }^{2}{,}\,{\href{/padicField/43.1.0.1}{1} }^{3}$ ${\href{/padicField/47.9.0.1}{9} }$ ${\href{/padicField/53.9.0.1}{9} }$ ${\href{/padicField/59.3.0.1}{3} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(3\) Copy content Toggle raw display 3.9.22.11$x^{9} + 9 x^{7} + 6 x^{6} + 18 x^{5} + 3$$9$$1$$22$$C_9:C_3$$[2, 3]^{3}$
\(7\) Copy content Toggle raw display 7.9.8.2$x^{9} + 7$$9$$1$$8$$C_9:C_3$$[\ ]_{9}^{3}$
\(13\) Copy content Toggle raw display 13.9.8.3$x^{9} + 52$$9$$1$$8$$C_9:C_3$$[\ ]_{9}^{3}$