Group action invariants
| Degree $n$ : | $9$ | |
| Transitive number $t$ : | $6$ | |
| Group : | $C_9:C_3$ | |
| CHM label : | $1/3[3^{3}]3$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $2$ | |
| Generators: | (1,4,7)(2,8,5), (1,2,3,4,5,6,7,8,9) | |
| $|\Aut(F/K)|$: | $3$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 3: $C_3$ x 4 9: $C_3^2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: $C_3$
Low degree siblings
27T5Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 3, 1, 1, 1 $ | $3$ | $3$ | $(2,5,8)(3,9,6)$ |
| $ 3, 3, 1, 1, 1 $ | $3$ | $3$ | $(2,8,5)(3,6,9)$ |
| $ 9 $ | $3$ | $9$ | $(1,2,3,4,5,6,7,8,9)$ |
| $ 9 $ | $3$ | $9$ | $(1,2,6,4,5,9,7,8,3)$ |
| $ 9 $ | $3$ | $9$ | $(1,2,9,4,5,3,7,8,6)$ |
| $ 9 $ | $3$ | $9$ | $(1,3,8,7,9,5,4,6,2)$ |
| $ 9 $ | $3$ | $9$ | $(1,3,5,7,9,2,4,6,8)$ |
| $ 9 $ | $3$ | $9$ | $(1,3,2,7,9,8,4,6,5)$ |
| $ 3, 3, 3 $ | $1$ | $3$ | $(1,4,7)(2,5,8)(3,6,9)$ |
| $ 3, 3, 3 $ | $1$ | $3$ | $(1,7,4)(2,8,5)(3,9,6)$ |
Group invariants
| Order: | $27=3^{3}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [27, 4] |
| Character table: |
3 3 2 2 2 2 2 2 2 2 3 3
1a 3a 3b 9a 9b 9c 9d 9e 9f 3c 3d
2P 1a 3b 3a 9e 9d 9f 9b 9a 9c 3d 3c
3P 1a 1a 1a 3c 3c 3c 3d 3d 3d 1a 1a
5P 1a 3b 3a 9e 9d 9f 9b 9a 9c 3d 3c
7P 1a 3a 3b 9a 9b 9c 9d 9e 9f 3c 3d
X.1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 A A A /A /A /A 1 1
X.3 1 1 1 /A /A /A A A A 1 1
X.4 1 A /A 1 A /A /A 1 A 1 1
X.5 1 /A A 1 /A A A 1 /A 1 1
X.6 1 A /A A /A 1 A /A 1 1 1
X.7 1 /A A /A A 1 /A A 1 1 1
X.8 1 A /A /A 1 A 1 A /A 1 1
X.9 1 /A A A 1 /A 1 /A A 1 1
X.10 3 . . . . . . . . B /B
X.11 3 . . . . . . . . /B B
A = E(3)^2
= (-1-Sqrt(-3))/2 = -1-b3
B = 3*E(3)^2
= (-3-3*Sqrt(-3))/2 = -3-3b3
|