Show commands: Magma
Group invariants
| Abstract group: | $C_9:C_3$ |
| |
| Order: | $27=3^{3}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | $2$ |
|
Group action invariants
| Degree $n$: | $9$ |
| |
| Transitive number $t$: | $6$ |
| |
| CHM label: | $1/3[3^{3}]3$ | ||
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $3$ |
| |
| Generators: | $(1,4,7)(2,8,5)$, $(1,2,3,4,5,6,7,8,9)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $3$: $C_3$ x 4 $9$: $C_3^2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: $C_3$
Low degree siblings
27T5Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{9}$ | $1$ | $1$ | $0$ | $()$ |
| 3A1 | $3^{3}$ | $1$ | $3$ | $6$ | $(1,4,7)(2,5,8)(3,6,9)$ |
| 3A-1 | $3^{3}$ | $1$ | $3$ | $6$ | $(1,7,4)(2,8,5)(3,9,6)$ |
| 3B1 | $3^{2},1^{3}$ | $3$ | $3$ | $4$ | $(1,7,4)(2,5,8)$ |
| 3B-1 | $3^{2},1^{3}$ | $3$ | $3$ | $4$ | $(1,4,7)(2,8,5)$ |
| 9A1 | $9$ | $3$ | $9$ | $8$ | $(1,5,6,4,8,9,7,2,3)$ |
| 9A-1 | $9$ | $3$ | $9$ | $8$ | $(1,6,8,7,3,5,4,9,2)$ |
| 9B1 | $9$ | $3$ | $9$ | $8$ | $(1,2,6,4,5,9,7,8,3)$ |
| 9B-1 | $9$ | $3$ | $9$ | $8$ | $(1,9,2,7,6,8,4,3,5)$ |
| 9C1 | $9$ | $3$ | $9$ | $8$ | $(1,3,5,7,9,2,4,6,8)$ |
| 9C-1 | $9$ | $3$ | $9$ | $8$ | $(1,8,6,4,2,9,7,5,3)$ |
Malle's constant $a(G)$: $1/4$
Character table
| 1A | 3A1 | 3A-1 | 3B1 | 3B-1 | 9A1 | 9A-1 | 9B1 | 9B-1 | 9C1 | 9C-1 | ||
| Size | 1 | 1 | 1 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | |
| 3 P | 1A | 3A-1 | 3A1 | 3B-1 | 3B1 | 9A-1 | 9A1 | 9B-1 | 9B1 | 9C-1 | 9C1 | |
| Type | ||||||||||||
| 27.4.1a | R | |||||||||||
| 27.4.1b1 | C | |||||||||||
| 27.4.1b2 | C | |||||||||||
| 27.4.1c1 | C | |||||||||||
| 27.4.1c2 | C | |||||||||||
| 27.4.1d1 | C | |||||||||||
| 27.4.1d2 | C | |||||||||||
| 27.4.1e1 | C | |||||||||||
| 27.4.1e2 | C | |||||||||||
| 27.4.3a1 | C | |||||||||||
| 27.4.3a2 | C |
Regular extensions
| $f_{ 1 } =$ |
$\left(60466176 t^{8} - 26873856 t^{6} + 4478976 t^{4} - 331776 t^{2} + 9216\right) x^{9} + \left(-41150592 t^{10} - 112627584 t^{8} + 30751488 t^{6} - 4955904 t^{4} + 611712 t^{2} - 31104\right) x^{7} + \left(-22861440 t^{10} - 62570880 t^{8} + 17084160 t^{6} - 2753280 t^{4} + 339840 t^{2} - 17280\right) x^{6} + \left(7001316 t^{12} + 38007144 t^{10} + 50494428 t^{8} - 808272 t^{6} + 2196828 t^{4} - 36504 t^{2} + 23652\right) x^{5} + \left(7779240 t^{12} + 46040400 t^{10} + 66533400 t^{8} - 3745440 t^{6} + 2899800 t^{4} - 97200 t^{2} + 29160\right) x^{4} + \left(3306177 t^{12} + 19567170 t^{10} + 28276695 t^{8} - 1591812 t^{6} + 1232415 t^{4} - 41310 t^{2} + 12393\right) x^{3} + \left(669879 t^{12} + 3964590 t^{10} + 5729265 t^{8} - 322524 t^{6} + 249705 t^{4} - 8370 t^{2} + 2511\right) x^{2} + \left(64827 t^{12} + 383670 t^{10} + 554445 t^{8} - 31212 t^{6} + 24165 t^{4} - 810 t^{2} + 243\right) x + \left(2401 t^{12} + 14210 t^{10} + 20535 t^{8} - 1156 t^{6} + 895 t^{4} - 30 t^{2} + 9\right)$
|