Properties

Label 9.3.44869371487471.1
Degree $9$
Signature $[3, 3]$
Discriminant $-4.487\times 10^{13}$
Root discriminant \(32.88\)
Ramified primes $31,197$
Class number $1$
Class group trivial
Galois group $(C_3^2:C_3):C_2$ (as 9T12)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^9 - 2*x^8 - 25*x^7 + 40*x^6 + 314*x^5 - 654*x^4 - 1063*x^3 + 3528*x^2 - 2244*x - 1832)
 
Copy content gp:K = bnfinit(y^9 - 2*y^8 - 25*y^7 + 40*y^6 + 314*y^5 - 654*y^4 - 1063*y^3 + 3528*y^2 - 2244*y - 1832, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^9 - 2*x^8 - 25*x^7 + 40*x^6 + 314*x^5 - 654*x^4 - 1063*x^3 + 3528*x^2 - 2244*x - 1832);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^9 - 2*x^8 - 25*x^7 + 40*x^6 + 314*x^5 - 654*x^4 - 1063*x^3 + 3528*x^2 - 2244*x - 1832)
 

\( x^{9} - 2x^{8} - 25x^{7} + 40x^{6} + 314x^{5} - 654x^{4} - 1063x^{3} + 3528x^{2} - 2244x - 1832 \) Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  $9$
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  $[3, 3]$
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   \(-44869371487471\) \(\medspace = -\,31^{3}\cdot 197^{4}\) Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(32.88\)
Copy content comment:Root discriminant
 
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:OK = ring_of_integers(K); (1.0 * abs(discriminant(OK)))^(1/degree(K))
 
Galois root discriminant:  $31^{1/2}197^{2/3}\approx 188.50592172874553$
Ramified primes:   \(31\), \(197\) Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant(OK))
 
Discriminant root field:  \(\Q(\sqrt{-31}) \)
$\Aut(K/\Q)$:   $C_3$
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.
This field has no CM subfields.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{30}a^{6}-\frac{1}{5}a^{5}-\frac{1}{30}a^{4}-\frac{3}{10}a^{3}-\frac{7}{30}a^{2}+\frac{2}{5}a-\frac{2}{15}$, $\frac{1}{30}a^{7}-\frac{7}{30}a^{5}+\frac{7}{15}a^{3}-\frac{7}{30}a+\frac{1}{5}$, $\frac{1}{429540540}a^{8}+\frac{338941}{107385135}a^{7}-\frac{1820529}{143180180}a^{6}-\frac{49793969}{214770270}a^{5}-\frac{421669}{9762285}a^{4}-\frac{30866026}{107385135}a^{3}+\frac{6098863}{429540540}a^{2}+\frac{16487329}{214770270}a-\frac{21626674}{107385135}$ Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

Ideal class group:  Trivial group, which has order $1$
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  Trivial group, which has order $1$
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  $5$
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   $\frac{779}{7809828}a^{8}-\frac{7431}{6508190}a^{7}-\frac{211531}{39049140}a^{6}+\frac{152553}{6508190}a^{5}+\frac{977954}{9762285}a^{4}-\frac{301139}{1301638}a^{3}-\frac{20648323}{39049140}a^{2}+\frac{603540}{650819}a-\frac{564566}{3254095}$, $\frac{15638}{9762285}a^{8}+\frac{21519}{6508190}a^{7}-\frac{137563}{3904914}a^{6}-\frac{433887}{6508190}a^{5}+\frac{1212347}{3254095}a^{4}+\frac{197059}{650819}a^{3}-\frac{11231097}{6508190}a^{2}+\frac{4819641}{3254095}a+\frac{10423637}{9762285}$, $\frac{526531}{214770270}a^{8}-\frac{824371}{107385135}a^{7}-\frac{457167}{14318018}a^{6}+\frac{12418711}{107385135}a^{5}+\frac{5437607}{19524570}a^{4}-\frac{389985841}{214770270}a^{3}+\frac{596713969}{214770270}a^{2}-\frac{214084861}{214770270}a-\frac{23601430}{21477027}$, $\frac{1465787}{33041580}a^{8}-\frac{1828249}{16520790}a^{7}-\frac{52824757}{33041580}a^{6}+\frac{5403367}{16520790}a^{5}+\frac{9634401}{500630}a^{4}-\frac{6555275}{1652079}a^{3}-\frac{666693671}{11013860}a^{2}+\frac{789529688}{8260395}a+\frac{257480816}{8260395}$, $\frac{486341}{429540540}a^{8}+\frac{762101}{71590090}a^{7}-\frac{58163987}{429540540}a^{6}+\frac{8795004}{35795045}a^{5}+\frac{19066207}{19524570}a^{4}-\frac{243003411}{71590090}a^{3}+\frac{292881763}{429540540}a^{2}+\frac{558977609}{71590090}a-\frac{351120152}{35795045}$ Copy content Toggle raw display
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 3111.74669351 \)
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{3}\cdot(2\pi)^{3}\cdot 3111.74669351 \cdot 1}{2\cdot\sqrt{44869371487471}}\cr\approx \mathstrut & 0.460923488384 \end{aligned}\]

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^9 - 2*x^8 - 25*x^7 + 40*x^6 + 314*x^5 - 654*x^4 - 1063*x^3 + 3528*x^2 - 2244*x - 1832) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^9 - 2*x^8 - 25*x^7 + 40*x^6 + 314*x^5 - 654*x^4 - 1063*x^3 + 3528*x^2 - 2244*x - 1832, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^9 - 2*x^8 - 25*x^7 + 40*x^6 + 314*x^5 - 654*x^4 - 1063*x^3 + 3528*x^2 - 2244*x - 1832); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = polynomial_ring(QQ); K, a = number_field(x^9 - 2*x^8 - 25*x^7 + 40*x^6 + 314*x^5 - 654*x^4 - 1063*x^3 + 3528*x^2 - 2244*x - 1832); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_3^2:S_3$ (as 9T12):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); degree(K) > 1 ? (G, transitive_group_identification(G)) : (G, nothing)
 
A solvable group of order 54
The 10 conjugacy class representatives for $(C_3^2:C_3):C_2$
Character table for $(C_3^2:C_3):C_2$

Intermediate fields

3.1.31.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(L)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Sibling fields

Degree 9 siblings: data not computed
Degree 18 siblings: data not computed
Degree 27 sibling: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.3.0.1}{3} }^{3}$ ${\href{/padicField/3.6.0.1}{6} }{,}\,{\href{/padicField/3.3.0.1}{3} }$ ${\href{/padicField/5.3.0.1}{3} }^{3}$ ${\href{/padicField/7.3.0.1}{3} }^{3}$ ${\href{/padicField/11.2.0.1}{2} }^{3}{,}\,{\href{/padicField/11.1.0.1}{1} }^{3}$ ${\href{/padicField/13.2.0.1}{2} }^{3}{,}\,{\href{/padicField/13.1.0.1}{1} }^{3}$ ${\href{/padicField/17.2.0.1}{2} }^{3}{,}\,{\href{/padicField/17.1.0.1}{1} }^{3}$ ${\href{/padicField/19.3.0.1}{3} }^{3}$ ${\href{/padicField/23.6.0.1}{6} }{,}\,{\href{/padicField/23.3.0.1}{3} }$ ${\href{/padicField/29.6.0.1}{6} }{,}\,{\href{/padicField/29.3.0.1}{3} }$ R ${\href{/padicField/37.6.0.1}{6} }{,}\,{\href{/padicField/37.3.0.1}{3} }$ ${\href{/padicField/41.3.0.1}{3} }^{3}$ ${\href{/padicField/43.6.0.1}{6} }{,}\,{\href{/padicField/43.3.0.1}{3} }$ ${\href{/padicField/47.3.0.1}{3} }^{3}$ ${\href{/padicField/53.6.0.1}{6} }{,}\,{\href{/padicField/53.3.0.1}{3} }$ ${\href{/padicField/59.3.0.1}{3} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(31\) Copy content Toggle raw display 31.3.1.0a1.1$x^{3} + x + 28$$1$$3$$0$$C_3$$$[\ ]^{3}$$
31.3.2.3a1.2$x^{6} + 2 x^{4} + 56 x^{3} + x^{2} + 56 x + 815$$2$$3$$3$$C_6$$$[\ ]_{2}^{3}$$
\(197\) Copy content Toggle raw display 197.3.1.0a1.1$x^{3} + 3 x + 195$$1$$3$$0$$C_3$$$[\ ]^{3}$$
197.2.3.4a1.1$x^{6} + 576 x^{5} + 110598 x^{4} + 7080192 x^{3} + 221196 x^{2} + 2501 x + 8$$3$$2$$4$$S_3\times C_3$$$[\ ]_{3}^{6}$$

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)