Group action invariants
| Degree $n$ : | $9$ | |
| Transitive number $t$ : | $12$ | |
| Group : | $(C_3^2:C_3):C_2$ | |
| CHM label : | $[3^{2}]S(3)$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (3,6)(4,7)(5,8), (3,4,5)(6,8,7), (1,4,7)(2,5,8)(3,6,9) | |
| $|\Aut(F/K)|$: | $3$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 6: $S_3$ x 4 18: $C_3^2:C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: $S_3$
Low degree siblings
9T12 x 3, 18T24 x 4, 27T6Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 3, 1, 1, 1 $ | $6$ | $3$ | $(3,4,5)(6,8,7)$ |
| $ 2, 2, 2, 1, 1, 1 $ | $9$ | $2$ | $(3,6)(4,7)(5,8)$ |
| $ 3, 3, 3 $ | $1$ | $3$ | $(1,2,9)(3,4,5)(6,7,8)$ |
| $ 6, 3 $ | $9$ | $6$ | $(1,2,9)(3,6,5,8,4,7)$ |
| $ 6, 3 $ | $9$ | $6$ | $(1,3,2,4,9,5)(6,8,7)$ |
| $ 3, 3, 3 $ | $6$ | $3$ | $(1,3,6)(2,4,7)(5,8,9)$ |
| $ 3, 3, 3 $ | $6$ | $3$ | $(1,3,7)(2,4,8)(5,6,9)$ |
| $ 3, 3, 3 $ | $6$ | $3$ | $(1,3,8)(2,4,6)(5,7,9)$ |
| $ 3, 3, 3 $ | $1$ | $3$ | $(1,9,2)(3,5,4)(6,8,7)$ |
Group invariants
| Order: | $54=2 \cdot 3^{3}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [54, 8] |
| Character table: |
2 1 . 1 1 1 1 . . . 1
3 3 2 1 3 1 1 2 2 2 3
1a 3a 2a 3b 6a 6b 3c 3d 3e 3f
2P 1a 3a 1a 3f 3f 3b 3c 3d 3e 3b
3P 1a 1a 2a 1a 2a 2a 1a 1a 1a 1a
5P 1a 3a 2a 3f 6b 6a 3c 3d 3e 3b
X.1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 -1 1 -1 -1 1 1 1 1
X.3 2 2 . 2 . . -1 -1 -1 2
X.4 2 -1 . 2 . . 2 -1 -1 2
X.5 2 -1 . 2 . . -1 -1 2 2
X.6 2 -1 . 2 . . -1 2 -1 2
X.7 3 . -1 A B /B . . . /A
X.8 3 . -1 /A /B B . . . A
X.9 3 . 1 A -B -/B . . . /A
X.10 3 . 1 /A -/B -B . . . A
A = 3*E(3)^2
= (-3-3*Sqrt(-3))/2 = -3-3b3
B = -E(3)^2
= (1+Sqrt(-3))/2 = 1+b3
|