Properties

Label 31.3.2.3a1.2
Base \(\Q_{31}\)
Degree \(6\)
e \(2\)
f \(3\)
c \(3\)
Galois group $C_6$ (as 6T1)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{3} + x + 28 )^{2} + 31$ Copy content Toggle raw display

Invariants

Base field: $\Q_{31}$
Degree $d$: $6$
Ramification index $e$: $2$
Residue field degree $f$: $3$
Discriminant exponent $c$: $3$
Discriminant root field: $\Q_{31}(\sqrt{31\cdot 3})$
Root number: $-i$
$\Aut(K/\Q_{31})$ $=$ $\Gal(K/\Q_{31})$: $C_6$
This field is Galois and abelian over $\Q_{31}.$
Visible Artin slopes:$[\ ]$
Visible Swan slopes:$[\ ]$
Means:$\langle\ \rangle$
Rams:$(\ )$
Jump set:undefined
Roots of unity:$29790 = (31^{ 3 } - 1)$

Intermediate fields

$\Q_{31}(\sqrt{31\cdot 3})$, 31.3.1.0a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:31.3.1.0a1.1 $\cong \Q_{31}(t)$ where $t$ is a root of \( x^{3} + x + 28 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{2} + 31 \) $\ \in\Q_{31}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z + 2$
Associated inertia:$1$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois degree: $6$
Galois group: $C_6$ (as 6T1)
Inertia group: Intransitive group isomorphic to $C_2$
Wild inertia group: $C_1$
Galois unramified degree: $3$
Galois tame degree: $2$
Galois Artin slopes: $[\ ]$
Galois Swan slopes: $[\ ]$
Galois mean slope: $0.5$
Galois splitting model:$x^{6} - x^{5} + 19 x^{4} - 13 x^{3} + 189 x^{2} - 49 x + 791$