Properties

Label 9.3.439...203.1
Degree $9$
Signature $[3, 3]$
Discriminant $-4.399\times 10^{34}$
Root discriminant \(7067.39\)
Ramified primes $3,37,73,127$
Class number $26034048$ (GRH)
Class group [6, 6, 18, 18, 2232] (GRH)
Galois group $S_3\times C_3$ (as 9T4)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^9 - 4900*x^7 - 3*x^6 - 630*x^5 + 9800*x^4 - 24*x^3 + 630*x^2 - 4900*x - 1)
 
gp: K = bnfinit(y^9 - 4900*y^7 - 3*y^6 - 630*y^5 + 9800*y^4 - 24*y^3 + 630*y^2 - 4900*y - 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^9 - 4900*x^7 - 3*x^6 - 630*x^5 + 9800*x^4 - 24*x^3 + 630*x^2 - 4900*x - 1);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^9 - 4900*x^7 - 3*x^6 - 630*x^5 + 9800*x^4 - 24*x^3 + 630*x^2 - 4900*x - 1)
 

\( x^{9} - 4900x^{7} - 3x^{6} - 630x^{5} + 9800x^{4} - 24x^{3} + 630x^{2} - 4900x - 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $9$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[3, 3]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-43987937064626389889214456471715203\) \(\medspace = -\,3^{3}\cdot 37^{6}\cdot 73^{6}\cdot 127^{6}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(7067.39\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $3^{1/2}37^{2/3}73^{2/3}127^{2/3}\approx 8487.494335737842$
Ramified primes:   \(3\), \(37\), \(73\), \(127\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-3}) \)
$\card{ \Aut(K/\Q) }$:  $3$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{3}a^{5}+\frac{1}{3}a^{4}+\frac{1}{3}a^{2}+\frac{1}{3}a-\frac{1}{3}$, $\frac{1}{3}a^{6}-\frac{1}{3}a^{4}+\frac{1}{3}a^{3}+\frac{1}{3}a+\frac{1}{3}$, $\frac{1}{9}a^{7}-\frac{1}{9}a^{6}-\frac{1}{9}a^{5}-\frac{4}{9}a^{4}+\frac{2}{9}a^{3}-\frac{2}{9}a^{2}-\frac{4}{9}$, $\frac{1}{6174243}a^{8}+\frac{25411}{686027}a^{7}-\frac{156806}{6174243}a^{6}+\frac{1}{6174243}a^{5}-\frac{2516039}{6174243}a^{4}+\frac{176407}{2058081}a^{3}+\frac{2058061}{6174243}a^{2}+\frac{228839}{6174243}a-\frac{1754269}{6174243}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{6}\times C_{6}\times C_{18}\times C_{18}\times C_{2232}$, which has order $26034048$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $5$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{20476}{6174243}a^{8}-\frac{20422}{6174243}a^{7}+\frac{33437746}{2058081}a^{6}+\frac{33379822}{2058081}a^{5}+\frac{35621719}{2058081}a^{4}-\frac{237898073}{6174243}a^{3}-\frac{237641849}{6174243}a^{2}-\frac{250542809}{6174243}a+\frac{38324}{6174243}$, $\frac{234661}{2058081}a^{8}+\frac{38378}{6174243}a^{7}+\frac{3450183511}{6174243}a^{6}-\frac{186617300}{6174243}a^{5}-\frac{2823998933}{6174243}a^{4}-\frac{3606976238}{6174243}a^{3}+\frac{68275793}{6174243}a^{2}+\frac{1035075616}{2058081}a+\frac{6898702}{6174243}$, $\frac{235501}{2058081}a^{8}-\frac{235483}{2058081}a^{7}+\frac{384573279}{686027}a^{6}+\frac{1154347940}{2058081}a^{5}+\frac{1300655507}{2058081}a^{4}-\frac{1055287103}{2058081}a^{3}-\frac{349904493}{686027}a^{2}-\frac{400045850}{686027}a+\frac{614060}{686027}$, $\frac{17956}{6174243}a^{8}+\frac{71961}{686027}a^{7}-\frac{88651211}{6174243}a^{6}-\frac{3173542946}{6174243}a^{5}+\frac{3254823889}{6174243}a^{4}-\frac{62251024}{2058081}a^{3}+\frac{3311093209}{6174243}a^{2}-\frac{3123063550}{6174243}a-\frac{724459}{6174243}$, $60\!\cdots\!75a^{8}-63\!\cdots\!62a^{7}+29\!\cdots\!00a^{6}+31\!\cdots\!25a^{5}+39\!\cdots\!74a^{4}-19\!\cdots\!40a^{3}-31\!\cdots\!25a^{2}-21\!\cdots\!38a-43\!\cdots\!28$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 1675675.4950873558 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{3}\cdot(2\pi)^{3}\cdot 1675675.4950873558 \cdot 26034048}{2\cdot\sqrt{43987937064626389889214456471715203}}\cr\approx \mathstrut & 0.206378484398527 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^9 - 4900*x^7 - 3*x^6 - 630*x^5 + 9800*x^4 - 24*x^3 + 630*x^2 - 4900*x - 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^9 - 4900*x^7 - 3*x^6 - 630*x^5 + 9800*x^4 - 24*x^3 + 630*x^2 - 4900*x - 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^9 - 4900*x^7 - 3*x^6 - 630*x^5 + 9800*x^4 - 24*x^3 + 630*x^2 - 4900*x - 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^9 - 4900*x^7 - 3*x^6 - 630*x^5 + 9800*x^4 - 24*x^3 + 630*x^2 - 4900*x - 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_3\times S_3$ (as 9T4):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 18
The 9 conjugacy class representatives for $S_3\times C_3$
Character table for $S_3\times C_3$

Intermediate fields

3.3.22080601.1, 3.1.353002568187.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Galois closure: data not computed
Degree 6 sibling: data not computed
Minimal sibling: 6.0.16930356172816707.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.6.0.1}{6} }{,}\,{\href{/padicField/2.3.0.1}{3} }$ R ${\href{/padicField/5.6.0.1}{6} }{,}\,{\href{/padicField/5.3.0.1}{3} }$ ${\href{/padicField/7.3.0.1}{3} }^{3}$ ${\href{/padicField/11.6.0.1}{6} }{,}\,{\href{/padicField/11.3.0.1}{3} }$ ${\href{/padicField/13.3.0.1}{3} }^{3}$ ${\href{/padicField/17.6.0.1}{6} }{,}\,{\href{/padicField/17.3.0.1}{3} }$ ${\href{/padicField/19.3.0.1}{3} }^{3}$ ${\href{/padicField/23.6.0.1}{6} }{,}\,{\href{/padicField/23.3.0.1}{3} }$ ${\href{/padicField/29.6.0.1}{6} }{,}\,{\href{/padicField/29.3.0.1}{3} }$ ${\href{/padicField/31.3.0.1}{3} }^{3}$ R ${\href{/padicField/41.2.0.1}{2} }^{3}{,}\,{\href{/padicField/41.1.0.1}{1} }^{3}$ ${\href{/padicField/43.3.0.1}{3} }^{3}$ ${\href{/padicField/47.2.0.1}{2} }^{3}{,}\,{\href{/padicField/47.1.0.1}{1} }^{3}$ ${\href{/padicField/53.6.0.1}{6} }{,}\,{\href{/padicField/53.3.0.1}{3} }$ ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.3.0.1}{3} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(3\) Copy content Toggle raw display 3.3.0.1$x^{3} + 2 x + 1$$1$$3$$0$$C_3$$[\ ]^{3}$
3.6.3.2$x^{6} + 13 x^{4} + 2 x^{3} + 31 x^{2} - 14 x + 4$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
\(37\) Copy content Toggle raw display 37.3.2.2$x^{3} + 74$$3$$1$$2$$C_3$$[\ ]_{3}$
37.3.2.2$x^{3} + 74$$3$$1$$2$$C_3$$[\ ]_{3}$
37.3.2.2$x^{3} + 74$$3$$1$$2$$C_3$$[\ ]_{3}$
\(73\) Copy content Toggle raw display 73.3.2.1$x^{3} + 73$$3$$1$$2$$C_3$$[\ ]_{3}$
73.3.2.1$x^{3} + 73$$3$$1$$2$$C_3$$[\ ]_{3}$
73.3.2.1$x^{3} + 73$$3$$1$$2$$C_3$$[\ ]_{3}$
\(127\) Copy content Toggle raw display 127.3.2.2$x^{3} + 1143$$3$$1$$2$$C_3$$[\ ]_{3}$
127.3.2.2$x^{3} + 1143$$3$$1$$2$$C_3$$[\ ]_{3}$
127.3.2.2$x^{3} + 1143$$3$$1$$2$$C_3$$[\ ]_{3}$