Properties

Label 3.6.3.2
Base \(\Q_{3}\)
Degree \(6\)
e \(2\)
f \(3\)
c \(3\)
Galois group $C_6$ (as 6T1)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{6} + 13 x^{4} + 2 x^{3} + 31 x^{2} - 14 x + 4\) Copy content Toggle raw display

Invariants

Base field: $\Q_{3}$
Degree $d$: $6$
Ramification exponent $e$: $2$
Residue field degree $f$: $3$
Discriminant exponent $c$: $3$
Discriminant root field: $\Q_{3}(\sqrt{3\cdot 2})$
Root number: $-i$
$\card{ \Gal(K/\Q_{ 3 }) }$: $6$
This field is Galois and abelian over $\Q_{3}.$
Visible slopes:None

Intermediate fields

$\Q_{3}(\sqrt{3\cdot 2})$, 3.3.0.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:3.3.0.1 $\cong \Q_{3}(t)$ where $t$ is a root of \( x^{3} + 2 x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{2} + 3 \) $\ \in\Q_{3}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z + 2$
Associated inertia:$1$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois group:$C_6$ (as 6T1)
Inertia group:Intransitive group isomorphic to $C_2$
Wild inertia group:$C_1$
Unramified degree:$3$
Tame degree:$2$
Wild slopes:None
Galois mean slope:$1/2$
Galois splitting model:$x^{6} - x^{5} + 3 x^{4} + 5 x^{2} - 2 x + 1$