Normalized defining polynomial
\( x^{9} - 9x^{7} - 25x^{6} + 159x^{5} + 216x^{4} - 794x^{3} - 3525x^{2} - 75x + 14299 \)
Invariants
| Degree: | $9$ |
| |
| Signature: | $[3, 3]$ |
| |
| Discriminant: |
\(-3789758442045443136192\)
\(\medspace = -\,2^{6}\cdot 3^{9}\cdot 7^{4}\cdot 11^{6}\cdot 29^{4}\)
|
| |
| Root discriminant: | \(249.82\) |
| |
| Galois root discriminant: | $2^{2/3}3^{7/6}7^{2/3}11^{2/3}29^{2/3}\approx 977.0585953813884$ | ||
| Ramified primes: |
\(2\), \(3\), \(7\), \(11\), \(29\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-3}) \) | ||
| $\Aut(K/\Q)$: | $C_3$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{6593555569}a^{8}-\frac{2915399129}{6593555569}a^{7}+\frac{1904022818}{6593555569}a^{6}+\frac{621291301}{6593555569}a^{5}-\frac{1576471654}{6593555569}a^{4}-\frac{568228571}{6593555569}a^{3}+\frac{700211182}{6593555569}a^{2}-\frac{1536402293}{6593555569}a+\frac{1534091225}{6593555569}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{3}\times C_{387}$, which has order $1161$ (assuming GRH) |
| |
| Narrow class group: | $C_{3}\times C_{387}$, which has order $1161$ (assuming GRH) |
|
Unit group
| Rank: | $5$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{694843}{6593555569}a^{8}-\frac{5972308}{6593555569}a^{7}+\frac{2007724}{6593555569}a^{6}+\frac{47691606}{6593555569}a^{5}+\frac{280308786}{6593555569}a^{4}-\frac{943932064}{6593555569}a^{3}-\frac{1627102084}{6593555569}a^{2}-\frac{2389853778}{6593555569}a+\frac{18575101428}{6593555569}$, $\frac{3886612}{6593555569}a^{8}+\frac{5765552}{6593555569}a^{7}-\frac{37487706}{6593555569}a^{6}-\frac{68739244}{6593555569}a^{5}+\frac{393508261}{6593555569}a^{4}+\frac{1080822822}{6593555569}a^{3}-\frac{1317275952}{6593555569}a^{2}-\frac{11923292156}{6593555569}a-\frac{16252866758}{6593555569}$, $\frac{32592167}{6593555569}a^{8}+\frac{162168661}{6593555569}a^{7}-\frac{1021356675}{6593555569}a^{6}-\frac{1302116149}{6593555569}a^{5}+\frac{10405499008}{6593555569}a^{4}+\frac{26750225756}{6593555569}a^{3}-\frac{129040189009}{6593555569}a^{2}-\frac{133337646639}{6593555569}a+\frac{471673596558}{6593555569}$, $\frac{5477323}{6593555569}a^{8}+\frac{70664276}{6593555569}a^{7}+\frac{252735742}{6593555569}a^{6}-\frac{19160505}{6593555569}a^{5}-\frac{3198806670}{6593555569}a^{4}-\frac{8792404794}{6593555569}a^{3}-\frac{3842905582}{6593555569}a^{2}+\frac{29510902044}{6593555569}a+\frac{50772546300}{6593555569}$, $\frac{37448270}{6593555569}a^{8}-\frac{176831465}{6593555569}a^{7}+\frac{109904017}{6593555569}a^{6}+\frac{465503110}{6593555569}a^{5}+\frac{2118926648}{6593555569}a^{4}-\frac{6054466678}{6593555569}a^{3}-\frac{22528689459}{6593555569}a^{2}+\frac{41521100357}{6593555569}a+\frac{12739290529}{6593555569}$
|
| |
| Regulator: | \( 12207.216264322764 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{3}\cdot(2\pi)^{3}\cdot 12207.216264322764 \cdot 1161}{2\cdot\sqrt{3789758442045443136192}}\cr\approx \mathstrut & 0.228424503840834 \end{aligned}\] (assuming GRH)
Galois group
$C_3^2:S_3$ (as 9T12):
| A solvable group of order 54 |
| The 10 conjugacy class representatives for $(C_3^2:C_3):C_2$ |
| Character table for $(C_3^2:C_3):C_2$ |
Intermediate fields
| 3.1.13068.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 9 siblings: | data not computed |
| Degree 18 siblings: | data not computed |
| Degree 27 sibling: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.6.0.1}{6} }{,}\,{\href{/padicField/5.3.0.1}{3} }$ | R | R | ${\href{/padicField/13.3.0.1}{3} }^{3}$ | ${\href{/padicField/17.6.0.1}{6} }{,}\,{\href{/padicField/17.3.0.1}{3} }$ | ${\href{/padicField/19.3.0.1}{3} }^{3}$ | ${\href{/padicField/23.6.0.1}{6} }{,}\,{\href{/padicField/23.3.0.1}{3} }$ | R | ${\href{/padicField/31.3.0.1}{3} }^{3}$ | ${\href{/padicField/37.3.0.1}{3} }^{3}$ | ${\href{/padicField/41.6.0.1}{6} }{,}\,{\href{/padicField/41.3.0.1}{3} }$ | ${\href{/padicField/43.3.0.1}{3} }^{2}{,}\,{\href{/padicField/43.1.0.1}{1} }^{3}$ | ${\href{/padicField/47.6.0.1}{6} }{,}\,{\href{/padicField/47.3.0.1}{3} }$ | ${\href{/padicField/53.6.0.1}{6} }{,}\,{\href{/padicField/53.3.0.1}{3} }$ | ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.3.3.6a1.1 | $x^{9} + 3 x^{7} + 3 x^{6} + 3 x^{5} + 6 x^{4} + 4 x^{3} + 3 x^{2} + 3 x + 3$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $$[\ ]_{3}^{6}$$ |
|
\(3\)
| 3.3.3.9a2.1 | $x^{9} + 6 x^{7} + 3 x^{6} + 12 x^{5} + 12 x^{4} + 14 x^{3} + 12 x^{2} + 12 x + 7$ | $3$ | $3$ | $9$ | $S_3\times C_3$ | $$[\frac{3}{2}]_{2}^{3}$$ |
|
\(7\)
| 7.1.3.2a1.2 | $x^{3} + 14$ | $3$ | $1$ | $2$ | $C_3$ | $$[\ ]_{3}$$ |
| 7.1.3.2a1.3 | $x^{3} + 21$ | $3$ | $1$ | $2$ | $C_3$ | $$[\ ]_{3}$$ | |
| 7.3.1.0a1.1 | $x^{3} + 6 x^{2} + 4$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | |
|
\(11\)
| 11.3.3.6a1.1 | $x^{9} + 6 x^{7} + 27 x^{6} + 12 x^{5} + 108 x^{4} + 251 x^{3} + 108 x^{2} + 486 x + 740$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $$[\ ]_{3}^{6}$$ |
|
\(29\)
| 29.3.1.0a1.1 | $x^{3} + 2 x + 27$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ |
| 29.2.3.4a1.1 | $x^{6} + 72 x^{5} + 1734 x^{4} + 14112 x^{3} + 3468 x^{2} + 317 x + 8$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $$[\ ]_{3}^{6}$$ |