Normalized defining polynomial
\( x^{9} - 3x^{8} + x^{7} - 13x^{6} + 101x^{5} + 137x^{4} - 184x^{3} - 1528x^{2} - 2624x - 1728 \)
Invariants
Degree: | $9$ |
| |
Signature: | $[1, 4]$ |
| |
Discriminant: |
\(3010936384000000\)
\(\medspace = 2^{12}\cdot 5^{6}\cdot 19^{6}\)
|
| |
Root discriminant: | \(52.46\) |
| |
Galois root discriminant: | $2^{3/2}5^{3/4}19^{2/3}\approx 67.34027682701665$ | ||
Ramified primes: |
\(2\), \(5\), \(19\)
|
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$: | $C_1$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
This field has no CM subfields. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{8}a^{7}+\frac{1}{8}a^{6}-\frac{3}{8}a^{5}-\frac{1}{8}a^{4}+\frac{1}{8}a^{3}-\frac{3}{8}a^{2}-\frac{1}{2}a$, $\frac{1}{1839003664}a^{8}+\frac{39776347}{1839003664}a^{7}+\frac{61978759}{1839003664}a^{6}-\frac{884002127}{1839003664}a^{5}+\frac{530885823}{1839003664}a^{4}-\frac{861124401}{1839003664}a^{3}+\frac{311706091}{919501832}a^{2}-\frac{44313063}{229875458}a+\frac{4043989}{114937729}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $2$ |
Class group and class number
Ideal class group: | $C_{3}\times C_{3}$, which has order $9$ (assuming GRH) |
| |
Narrow class group: | $C_{3}\times C_{3}$, which has order $9$ (assuming GRH) |
|
Unit group
Rank: | $4$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$\frac{1829397}{229875458}a^{8}-\frac{771977}{114937729}a^{7}-\frac{15125597}{229875458}a^{6}+\frac{18686473}{229875458}a^{5}+\frac{109434531}{229875458}a^{4}+\frac{646487841}{229875458}a^{3}-\frac{160493207}{114937729}a^{2}-\frac{2650177637}{229875458}a-\frac{1198601009}{114937729}$, $\frac{442473}{1839003664}a^{8}+\frac{4895277}{1839003664}a^{7}+\frac{15167065}{1839003664}a^{6}+\frac{41049867}{1839003664}a^{5}+\frac{38369277}{1839003664}a^{4}+\frac{21437777}{1839003664}a^{3}+\frac{11837025}{229875458}a^{2}+\frac{4101520}{114937729}a+\frac{5379725}{114937729}$, $\frac{94215087}{1839003664}a^{8}-\frac{477498537}{1839003664}a^{7}+\frac{317521379}{1839003664}a^{6}+\frac{1946687841}{1839003664}a^{5}+\frac{3161707975}{1839003664}a^{4}-\frac{9373818981}{1839003664}a^{3}-\frac{6333869985}{459750916}a^{2}-\frac{2165292463}{229875458}a+\frac{226229981}{114937729}$, $\frac{2370970}{114937729}a^{8}-\frac{15091793}{229875458}a^{7}-\frac{9545597}{229875458}a^{6}+\frac{18047487}{229875458}a^{5}+\frac{397647231}{229875458}a^{4}+\frac{616683819}{229875458}a^{3}-\frac{2469479001}{229875458}a^{2}-\frac{3034155409}{114937729}a-\frac{1963380283}{114937729}$
|
| |
Regulator: | \( 11158.3713962 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{4}\cdot 11158.3713962 \cdot 9}{2\cdot\sqrt{3010936384000000}}\cr\approx \mathstrut & 2.85241036189 \end{aligned}\] (assuming GRH)
Galois group
$C_3^2:C_4$ (as 9T9):
A solvable group of order 36 |
The 6 conjugacy class representatives for $C_3^2:C_4$ |
Character table for $C_3^2:C_4$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
Galois closure: | data not computed |
Degree 6 siblings: | 6.2.14440000.2, 6.2.5212840000.4 |
Degree 12 siblings: | data not computed |
Degree 18 sibling: | data not computed |
Minimal sibling: | 6.2.14440000.2 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.4.0.1}{4} }^{2}{,}\,{\href{/padicField/3.1.0.1}{1} }$ | R | ${\href{/padicField/7.4.0.1}{4} }^{2}{,}\,{\href{/padicField/7.1.0.1}{1} }$ | ${\href{/padicField/11.2.0.1}{2} }^{4}{,}\,{\href{/padicField/11.1.0.1}{1} }$ | ${\href{/padicField/13.4.0.1}{4} }^{2}{,}\,{\href{/padicField/13.1.0.1}{1} }$ | ${\href{/padicField/17.4.0.1}{4} }^{2}{,}\,{\href{/padicField/17.1.0.1}{1} }$ | R | ${\href{/padicField/23.4.0.1}{4} }^{2}{,}\,{\href{/padicField/23.1.0.1}{1} }$ | ${\href{/padicField/29.3.0.1}{3} }^{3}$ | ${\href{/padicField/31.3.0.1}{3} }^{3}$ | ${\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.1.0.1}{1} }$ | ${\href{/padicField/41.3.0.1}{3} }^{3}$ | ${\href{/padicField/43.4.0.1}{4} }^{2}{,}\,{\href{/padicField/43.1.0.1}{1} }$ | ${\href{/padicField/47.4.0.1}{4} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }$ | ${\href{/padicField/53.4.0.1}{4} }^{2}{,}\,{\href{/padicField/53.1.0.1}{1} }$ | ${\href{/padicField/59.3.0.1}{3} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
2.2.2.6a1.6 | $x^{4} + 2 x^{3} + 7 x^{2} + 14 x + 7$ | $2$ | $2$ | $6$ | $C_4$ | $$[3]^{2}$$ | |
2.2.2.6a1.6 | $x^{4} + 2 x^{3} + 7 x^{2} + 14 x + 7$ | $2$ | $2$ | $6$ | $C_4$ | $$[3]^{2}$$ | |
\(5\)
| $\Q_{5}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
5.1.4.3a1.4 | $x^{4} + 20$ | $4$ | $1$ | $3$ | $C_4$ | $$[\ ]_{4}$$ | |
5.1.4.3a1.4 | $x^{4} + 20$ | $4$ | $1$ | $3$ | $C_4$ | $$[\ ]_{4}$$ | |
\(19\)
| 19.1.3.2a1.2 | $x^{3} + 38$ | $3$ | $1$ | $2$ | $C_3$ | $$[\ ]_{3}$$ |
19.1.3.2a1.2 | $x^{3} + 38$ | $3$ | $1$ | $2$ | $C_3$ | $$[\ ]_{3}$$ | |
19.1.3.2a1.2 | $x^{3} + 38$ | $3$ | $1$ | $2$ | $C_3$ | $$[\ ]_{3}$$ |