Properties

Label 9.1.3010936384000000.3
Degree $9$
Signature $[1, 4]$
Discriminant $3.011\times 10^{15}$
Root discriminant \(52.46\)
Ramified primes $2,5,19$
Class number $9$ (GRH)
Class group [3, 3] (GRH)
Galois group $C_3^2:C_4$ (as 9T9)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^9 - 3*x^8 + x^7 - 13*x^6 + 101*x^5 + 137*x^4 - 184*x^3 - 1528*x^2 - 2624*x - 1728)
 
Copy content gp:K = bnfinit(y^9 - 3*y^8 + y^7 - 13*y^6 + 101*y^5 + 137*y^4 - 184*y^3 - 1528*y^2 - 2624*y - 1728, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^9 - 3*x^8 + x^7 - 13*x^6 + 101*x^5 + 137*x^4 - 184*x^3 - 1528*x^2 - 2624*x - 1728);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^9 - 3*x^8 + x^7 - 13*x^6 + 101*x^5 + 137*x^4 - 184*x^3 - 1528*x^2 - 2624*x - 1728)
 

\( x^{9} - 3x^{8} + x^{7} - 13x^{6} + 101x^{5} + 137x^{4} - 184x^{3} - 1528x^{2} - 2624x - 1728 \) Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  $9$
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  $[1, 4]$
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   \(3010936384000000\) \(\medspace = 2^{12}\cdot 5^{6}\cdot 19^{6}\) Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(52.46\)
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:(1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{3/2}5^{3/4}19^{2/3}\approx 67.34027682701665$
Ramified primes:   \(2\), \(5\), \(19\) Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\Aut(K/\Q)$:   $C_1$
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.
This field has no CM subfields.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{8}a^{7}+\frac{1}{8}a^{6}-\frac{3}{8}a^{5}-\frac{1}{8}a^{4}+\frac{1}{8}a^{3}-\frac{3}{8}a^{2}-\frac{1}{2}a$, $\frac{1}{1839003664}a^{8}+\frac{39776347}{1839003664}a^{7}+\frac{61978759}{1839003664}a^{6}-\frac{884002127}{1839003664}a^{5}+\frac{530885823}{1839003664}a^{4}-\frac{861124401}{1839003664}a^{3}+\frac{311706091}{919501832}a^{2}-\frac{44313063}{229875458}a+\frac{4043989}{114937729}$ Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

Ideal class group:  $C_{3}\times C_{3}$, which has order $9$ (assuming GRH)
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  $C_{3}\times C_{3}$, which has order $9$ (assuming GRH)
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  $4$
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   $\frac{1829397}{229875458}a^{8}-\frac{771977}{114937729}a^{7}-\frac{15125597}{229875458}a^{6}+\frac{18686473}{229875458}a^{5}+\frac{109434531}{229875458}a^{4}+\frac{646487841}{229875458}a^{3}-\frac{160493207}{114937729}a^{2}-\frac{2650177637}{229875458}a-\frac{1198601009}{114937729}$, $\frac{442473}{1839003664}a^{8}+\frac{4895277}{1839003664}a^{7}+\frac{15167065}{1839003664}a^{6}+\frac{41049867}{1839003664}a^{5}+\frac{38369277}{1839003664}a^{4}+\frac{21437777}{1839003664}a^{3}+\frac{11837025}{229875458}a^{2}+\frac{4101520}{114937729}a+\frac{5379725}{114937729}$, $\frac{94215087}{1839003664}a^{8}-\frac{477498537}{1839003664}a^{7}+\frac{317521379}{1839003664}a^{6}+\frac{1946687841}{1839003664}a^{5}+\frac{3161707975}{1839003664}a^{4}-\frac{9373818981}{1839003664}a^{3}-\frac{6333869985}{459750916}a^{2}-\frac{2165292463}{229875458}a+\frac{226229981}{114937729}$, $\frac{2370970}{114937729}a^{8}-\frac{15091793}{229875458}a^{7}-\frac{9545597}{229875458}a^{6}+\frac{18047487}{229875458}a^{5}+\frac{397647231}{229875458}a^{4}+\frac{616683819}{229875458}a^{3}-\frac{2469479001}{229875458}a^{2}-\frac{3034155409}{114937729}a-\frac{1963380283}{114937729}$ Copy content Toggle raw display (assuming GRH)
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 11158.3713962 \) (assuming GRH)
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{4}\cdot 11158.3713962 \cdot 9}{2\cdot\sqrt{3010936384000000}}\cr\approx \mathstrut & 2.85241036189 \end{aligned}\] (assuming GRH)

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^9 - 3*x^8 + x^7 - 13*x^6 + 101*x^5 + 137*x^4 - 184*x^3 - 1528*x^2 - 2624*x - 1728) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^9 - 3*x^8 + x^7 - 13*x^6 + 101*x^5 + 137*x^4 - 184*x^3 - 1528*x^2 - 2624*x - 1728, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^9 - 3*x^8 + x^7 - 13*x^6 + 101*x^5 + 137*x^4 - 184*x^3 - 1528*x^2 - 2624*x - 1728); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = PolynomialRing(QQ); K, a = NumberField(x^9 - 3*x^8 + x^7 - 13*x^6 + 101*x^5 + 137*x^4 - 184*x^3 - 1528*x^2 - 2624*x - 1728); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_3^2:C_4$ (as 9T9):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 36
The 6 conjugacy class representatives for $C_3^2:C_4$
Character table for $C_3^2:C_4$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(b)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Sibling fields

Galois closure: data not computed
Degree 6 siblings: 6.2.14440000.2, 6.2.5212840000.4
Degree 12 siblings: data not computed
Degree 18 sibling: data not computed
Minimal sibling: 6.2.14440000.2

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.4.0.1}{4} }^{2}{,}\,{\href{/padicField/3.1.0.1}{1} }$ R ${\href{/padicField/7.4.0.1}{4} }^{2}{,}\,{\href{/padicField/7.1.0.1}{1} }$ ${\href{/padicField/11.2.0.1}{2} }^{4}{,}\,{\href{/padicField/11.1.0.1}{1} }$ ${\href{/padicField/13.4.0.1}{4} }^{2}{,}\,{\href{/padicField/13.1.0.1}{1} }$ ${\href{/padicField/17.4.0.1}{4} }^{2}{,}\,{\href{/padicField/17.1.0.1}{1} }$ R ${\href{/padicField/23.4.0.1}{4} }^{2}{,}\,{\href{/padicField/23.1.0.1}{1} }$ ${\href{/padicField/29.3.0.1}{3} }^{3}$ ${\href{/padicField/31.3.0.1}{3} }^{3}$ ${\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.1.0.1}{1} }$ ${\href{/padicField/41.3.0.1}{3} }^{3}$ ${\href{/padicField/43.4.0.1}{4} }^{2}{,}\,{\href{/padicField/43.1.0.1}{1} }$ ${\href{/padicField/47.4.0.1}{4} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }$ ${\href{/padicField/53.4.0.1}{4} }^{2}{,}\,{\href{/padicField/53.1.0.1}{1} }$ ${\href{/padicField/59.3.0.1}{3} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display $\Q_{2}$$x + 1$$1$$1$$0$Trivial$$[\ ]$$
2.2.2.6a1.6$x^{4} + 2 x^{3} + 7 x^{2} + 14 x + 7$$2$$2$$6$$C_4$$$[3]^{2}$$
2.2.2.6a1.6$x^{4} + 2 x^{3} + 7 x^{2} + 14 x + 7$$2$$2$$6$$C_4$$$[3]^{2}$$
\(5\) Copy content Toggle raw display $\Q_{5}$$x + 3$$1$$1$$0$Trivial$$[\ ]$$
5.1.4.3a1.4$x^{4} + 20$$4$$1$$3$$C_4$$$[\ ]_{4}$$
5.1.4.3a1.4$x^{4} + 20$$4$$1$$3$$C_4$$$[\ ]_{4}$$
\(19\) Copy content Toggle raw display 19.1.3.2a1.2$x^{3} + 38$$3$$1$$2$$C_3$$$[\ ]_{3}$$
19.1.3.2a1.2$x^{3} + 38$$3$$1$$2$$C_3$$$[\ ]_{3}$$
19.1.3.2a1.2$x^{3} + 38$$3$$1$$2$$C_3$$$[\ ]_{3}$$

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)