Properties

Label 9T9
Order \(36\)
n \(9\)
Cyclic No
Abelian No
Solvable Yes
Primitive Yes
$p$-group No
Group: $C_3^2:C_4$

Related objects

Learn more about

Group action invariants

Degree $n$ :  $9$
Transitive number $t$ :  $9$
Group :  $C_3^2:C_4$
CHM label :  $E(9):4$
Parity:  $1$
Primitive:  Yes
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,2,9)(3,4,5)(6,7,8), (1,8,2,4)(3,5,6,7), (1,4,7)(2,5,8)(3,6,9)
$|\Aut(F/K)|$:  $1$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$
4:  $C_4$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 3: None

Low degree siblings

6T10 x 2, 12T17 x 2, 18T10, 36T14

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

Cycle TypeSizeOrderRepresentative
$ 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $1$ $1$ $()$
$ 4, 4, 1 $ $9$ $4$ $(2,5,9,6)(3,4,8,7)$
$ 4, 4, 1 $ $9$ $4$ $(2,6,9,5)(3,7,8,4)$
$ 2, 2, 2, 2, 1 $ $9$ $2$ $(2,9)(3,8)(4,7)(5,6)$
$ 3, 3, 3 $ $4$ $3$ $(1,2,9)(3,4,5)(6,7,8)$
$ 3, 3, 3 $ $4$ $3$ $(1,3,8)(2,4,6)(5,7,9)$

Group invariants

Order:  $36=2^{2} \cdot 3^{2}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  [36, 9]
Character table:   
     2  2  2  2  2  .  .
     3  2  .  .  .  2  2

       1a 4a 4b 2a 3a 3b
    2P 1a 2a 2a 1a 3a 3b
    3P 1a 4b 4a 2a 1a 1a

X.1     1  1  1  1  1  1
X.2     1 -1 -1  1  1  1
X.3     1  A -A -1  1  1
X.4     1 -A  A -1  1  1
X.5     4  .  .  .  1 -2
X.6     4  .  .  . -2  1

A = -E(4)
  = -Sqrt(-1) = -i