Group action invariants
| Degree $n$ : | $9$ | |
| Transitive number $t$ : | $9$ | |
| Group : | $C_3^2:C_4$ | |
| CHM label : | $E(9):4$ | |
| Parity: | $1$ | |
| Primitive: | Yes | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,2,9)(3,4,5)(6,7,8), (1,8,2,4)(3,5,6,7), (1,4,7)(2,5,8)(3,6,9) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 4: $C_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: None
Low degree siblings
6T10 x 2, 12T17 x 2, 18T10, 36T14Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 4, 4, 1 $ | $9$ | $4$ | $(2,5,9,6)(3,4,8,7)$ |
| $ 4, 4, 1 $ | $9$ | $4$ | $(2,6,9,5)(3,7,8,4)$ |
| $ 2, 2, 2, 2, 1 $ | $9$ | $2$ | $(2,9)(3,8)(4,7)(5,6)$ |
| $ 3, 3, 3 $ | $4$ | $3$ | $(1,2,9)(3,4,5)(6,7,8)$ |
| $ 3, 3, 3 $ | $4$ | $3$ | $(1,3,8)(2,4,6)(5,7,9)$ |
Group invariants
| Order: | $36=2^{2} \cdot 3^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [36, 9] |
| Character table: |
2 2 2 2 2 . .
3 2 . . . 2 2
1a 4a 4b 2a 3a 3b
2P 1a 2a 2a 1a 3a 3b
3P 1a 4b 4a 2a 1a 1a
X.1 1 1 1 1 1 1
X.2 1 -1 -1 1 1 1
X.3 1 A -A -1 1 1
X.4 1 -A A -1 1 1
X.5 4 . . . 1 -2
X.6 4 . . . -2 1
A = -E(4)
= -Sqrt(-1) = -i
|