Normalized defining polynomial
\( x^{8} - 4x^{7} + 10x^{6} - 12x^{5} + 15x^{4} + 48x^{3} - 82x^{2} - 20x - 1 \)
Invariants
| Degree: | $8$ |
| |
| Signature: | $[4, 2]$ |
| |
| Discriminant: |
\(6718464000000\)
\(\medspace = 2^{16}\cdot 3^{8}\cdot 5^{6}\)
|
| |
| Root discriminant: | \(40.12\) |
| |
| Galois root discriminant: | $2^{61/24}3^{8/5}5^{5/6}\approx 129.11803760167285$ | ||
| Ramified primes: |
\(2\), \(3\), \(5\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{5667}a^{7}-\frac{56}{1889}a^{6}-\frac{773}{5667}a^{5}+\frac{2086}{5667}a^{4}-\frac{2069}{5667}a^{3}-\frac{656}{5667}a^{2}-\frac{57}{1889}a-\frac{311}{5667}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{2}$, which has order $2$ |
| |
| Narrow class group: | $C_{2}\times C_{2}$, which has order $4$ |
|
Unit group
| Rank: | $5$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$a$, $\frac{8711}{5667}a^{7}-\frac{11788}{1889}a^{6}+\frac{89465}{5667}a^{5}-\frac{110596}{5667}a^{4}+\frac{139676}{5667}a^{3}+\frac{405944}{5667}a^{2}-\frac{243401}{1889}a-\frac{119302}{5667}$, $\frac{13654}{5667}a^{7}-\frac{18469}{1889}a^{6}+\frac{139087}{5667}a^{5}-\frac{170108}{5667}a^{4}+\frac{215215}{5667}a^{3}+\frac{631540}{5667}a^{2}-\frac{385366}{1889}a-\frac{188822}{5667}$, $\frac{1670}{1889}a^{7}-\frac{6655}{1889}a^{6}+\frac{16278}{1889}a^{5}-\frac{18586}{1889}a^{4}+\frac{20530}{1889}a^{3}+\frac{88883}{1889}a^{2}-\frac{149562}{1889}a-\frac{24452}{1889}$, $\frac{10649}{5667}a^{7}-\frac{14532}{1889}a^{6}+\frac{110147}{5667}a^{5}-\frac{136834}{5667}a^{4}+\frac{170525}{5667}a^{3}+\frac{494696}{5667}a^{2}-\frac{308531}{1889}a-\frac{149653}{5667}$
|
| |
| Regulator: | \( 4747.51307212 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{2}\cdot 4747.51307212 \cdot 2}{2\cdot\sqrt{6718464000000}}\cr\approx \mathstrut & 1.15694014595 \end{aligned}\]
Galois group
| A non-solvable group of order 20160 |
| The 14 conjugacy class representatives for $A_8$ |
| Character table for $A_8$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Degree 15 siblings: | deg 15, deg 15 |
| Degree 28 sibling: | deg 28 |
| Degree 35 sibling: | deg 35 |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/padicField/7.7.0.1}{7} }{,}\,{\href{/padicField/7.1.0.1}{1} }$ | ${\href{/padicField/11.6.0.1}{6} }{,}\,{\href{/padicField/11.2.0.1}{2} }$ | ${\href{/padicField/13.7.0.1}{7} }{,}\,{\href{/padicField/13.1.0.1}{1} }$ | ${\href{/padicField/17.5.0.1}{5} }{,}\,{\href{/padicField/17.1.0.1}{1} }^{3}$ | ${\href{/padicField/19.4.0.1}{4} }^{2}$ | ${\href{/padicField/23.7.0.1}{7} }{,}\,{\href{/padicField/23.1.0.1}{1} }$ | ${\href{/padicField/29.4.0.1}{4} }{,}\,{\href{/padicField/29.2.0.1}{2} }{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | ${\href{/padicField/31.6.0.1}{6} }{,}\,{\href{/padicField/31.2.0.1}{2} }$ | ${\href{/padicField/37.7.0.1}{7} }{,}\,{\href{/padicField/37.1.0.1}{1} }$ | ${\href{/padicField/41.5.0.1}{5} }{,}\,{\href{/padicField/41.3.0.1}{3} }$ | ${\href{/padicField/43.4.0.1}{4} }^{2}$ | ${\href{/padicField/47.6.0.1}{6} }{,}\,{\href{/padicField/47.2.0.1}{2} }$ | ${\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.2.0.1}{2} }{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ | ${\href{/padicField/59.3.0.1}{3} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.2.4.16a2.3 | $x^{8} + 4 x^{7} + 10 x^{6} + 16 x^{5} + 23 x^{4} + 28 x^{3} + 26 x^{2} + 16 x + 7$ | $4$ | $2$ | $16$ | $A_4\wr C_2$ | $$[\frac{8}{3}, \frac{8}{3}, \frac{8}{3}, \frac{8}{3}]_{3}^{6}$$ |
|
\(3\)
| 3.1.3.4a1.1 | $x^{3} + 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $S_3$ | $$[2]^{2}$$ |
| 3.1.5.4a1.1 | $x^{5} + 3$ | $5$ | $1$ | $4$ | $F_5$ | $$[\ ]_{5}^{4}$$ | |
|
\(5\)
| 5.1.2.1a1.1 | $x^{2} + 5$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 5.1.6.5a1.1 | $x^{6} + 5$ | $6$ | $1$ | $5$ | $D_{6}$ | $$[\ ]_{6}^{2}$$ |