Normalized defining polynomial
\( x^{8} - 4x^{7} - 24x^{6} + 86x^{5} + 215x^{4} - 578x^{3} - 1350x^{2} + 1654x + 1443 \)
Invariants
| Degree: | $8$ |
| |
| Signature: | $[4, 2]$ |
| |
| Discriminant: |
\(3475049209404304\)
\(\medspace = 2^{4}\cdot 7^{4}\cdot 67^{6}\)
|
| |
| Root discriminant: | \(87.62\) |
| |
| Galois root discriminant: | $2^{2/3}7^{1/2}67^{3/4}\approx 98.35394535093855$ | ||
| Ramified primes: |
\(2\), \(7\), \(67\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{196}a^{6}-\frac{3}{196}a^{5}+\frac{12}{49}a^{4}-\frac{13}{28}a^{3}+\frac{45}{196}a+\frac{67}{196}$, $\frac{1}{135828}a^{7}+\frac{1}{396}a^{6}-\frac{5297}{67914}a^{5}-\frac{3043}{15092}a^{4}+\frac{2329}{9702}a^{3}+\frac{15725}{135828}a^{2}+\frac{22105}{135828}a-\frac{10183}{22638}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $2$, $3$ |
Class group and class number
| Ideal class group: | $C_{3}$, which has order $3$ (assuming GRH) |
| |
| Narrow class group: | $C_{6}$, which has order $6$ (assuming GRH) |
|
Unit group
| Rank: | $5$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{620}{33957}a^{7}-\frac{211}{4851}a^{6}-\frac{17351}{33957}a^{5}+\frac{5763}{7546}a^{4}+\frac{25177}{4851}a^{3}-\frac{162103}{67914}a^{2}-\frac{990658}{33957}a-\frac{374909}{22638}$, $\frac{24}{3773}a^{7}-\frac{5}{154}a^{6}-\frac{926}{3773}a^{5}+\frac{1909}{3773}a^{4}+\frac{1836}{539}a^{3}+\frac{7646}{3773}a^{2}-\frac{32196}{3773}a-\frac{37735}{7546}$, $\frac{271}{67914}a^{7}-\frac{185}{9702}a^{6}-\frac{3749}{33957}a^{5}+\frac{2280}{3773}a^{4}+\frac{1915}{4851}a^{3}-\frac{161360}{33957}a^{2}+\frac{187273}{67914}a+\frac{84181}{22638}$, $\frac{569}{67914}a^{7}+\frac{31}{4851}a^{6}-\frac{10667}{67914}a^{5}-\frac{661}{7546}a^{4}+\frac{10765}{9702}a^{3}+\frac{118705}{67914}a^{2}-\frac{62126}{33957}a-\frac{45415}{22638}$, $\frac{40\cdots 73}{67914}a^{7}-\frac{349255803558982}{693}a^{6}-\frac{14\cdots 43}{67914}a^{5}+\frac{50\cdots 54}{3773}a^{4}+\frac{23\cdots 93}{9702}a^{3}-\frac{24\cdots 40}{33957}a^{2}-\frac{17\cdots 31}{33957}a+\frac{33\cdots 85}{11319}$
|
| |
| Regulator: | \( 226076.711964 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{2}\cdot 226076.711964 \cdot 3}{2\cdot\sqrt{3475049209404304}}\cr\approx \mathstrut & 3.63367706047 \end{aligned}\] (assuming GRH)
Galois group
$C_2\times S_4$ (as 8T24):
| A solvable group of order 48 |
| The 10 conjugacy class representatives for $S_4\times C_2$ |
| Character table for $S_4\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{469}) \), 4.2.58949548.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 siblings: | 6.2.33685456.1, 6.0.2256925552.1 |
| Degree 8 sibling: | 8.0.3475049209404304.1 |
| Degree 12 siblings: | deg 12, deg 12, deg 12, deg 12, deg 12, deg 12 |
| Degree 16 sibling: | deg 16 |
| Degree 24 siblings: | deg 24, deg 24, deg 24, deg 24 |
| Minimal sibling: | 6.2.33685456.1 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.2.0.1}{2} }^{2}{,}\,{\href{/padicField/3.1.0.1}{1} }^{4}$ | ${\href{/padicField/5.4.0.1}{4} }^{2}$ | R | ${\href{/padicField/11.2.0.1}{2} }^{4}$ | ${\href{/padicField/13.2.0.1}{2} }^{2}{,}\,{\href{/padicField/13.1.0.1}{1} }^{4}$ | ${\href{/padicField/17.6.0.1}{6} }{,}\,{\href{/padicField/17.2.0.1}{2} }$ | ${\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.2.0.1}{2} }$ | ${\href{/padicField/23.3.0.1}{3} }^{2}{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ | ${\href{/padicField/29.3.0.1}{3} }^{2}{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | ${\href{/padicField/31.4.0.1}{4} }^{2}$ | ${\href{/padicField/37.3.0.1}{3} }^{2}{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ | ${\href{/padicField/41.2.0.1}{2} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }^{4}$ | ${\href{/padicField/43.2.0.1}{2} }^{4}$ | ${\href{/padicField/47.6.0.1}{6} }{,}\,{\href{/padicField/47.2.0.1}{2} }$ | ${\href{/padicField/53.4.0.1}{4} }^{2}$ | ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.2.1.0a1.1 | $x^{2} + x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
| 2.2.3.4a1.2 | $x^{6} + 3 x^{5} + 6 x^{4} + 7 x^{3} + 6 x^{2} + 3 x + 3$ | $3$ | $2$ | $4$ | $S_3$ | $$[\ ]_{3}^{2}$$ | |
|
\(7\)
| 7.1.2.1a1.2 | $x^{2} + 21$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 7.1.2.1a1.2 | $x^{2} + 21$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 7.2.2.2a1.2 | $x^{4} + 12 x^{3} + 42 x^{2} + 36 x + 16$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
|
\(67\)
| 67.2.4.6a1.2 | $x^{8} + 252 x^{7} + 23822 x^{6} + 1001700 x^{5} + 15848241 x^{4} + 2003400 x^{3} + 95288 x^{2} + 2016 x + 83$ | $4$ | $2$ | $6$ | $D_4$ | $$[\ ]_{4}^{2}$$ |