Normalized defining polynomial
\( x^{8} + 16x^{6} - 172x^{4} + 256x^{2} + 256 \)
Invariants
| Degree: | $8$ |
| |
| Signature: | $[4, 2]$ |
| |
| Discriminant: |
\(3334657800278016\)
\(\medspace = 2^{12}\cdot 3^{2}\cdot 67^{6}\)
|
| |
| Root discriminant: | \(87.17\) |
| |
| Galois root discriminant: | $2^{3/2}3^{1/2}67^{3/4}\approx 114.7259659238958$ | ||
| Ramified primes: |
\(2\), \(3\), \(67\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2^2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2}a^{2}$, $\frac{1}{4}a^{3}-\frac{1}{2}a$, $\frac{1}{8}a^{4}-\frac{1}{4}a^{2}-\frac{1}{2}a$, $\frac{1}{8}a^{5}-\frac{1}{2}a$, $\frac{1}{64}a^{6}-\frac{1}{16}a^{5}+\frac{1}{16}a^{2}+\frac{1}{4}a-\frac{1}{2}$, $\frac{1}{128}a^{7}-\frac{1}{16}a^{5}-\frac{3}{32}a^{3}-\frac{1}{4}a$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}$, which has order $2$ (assuming GRH) |
|
Unit group
| Rank: | $5$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{7}{128}a^{7}+\frac{21}{16}a^{5}-\frac{245}{32}a^{3}-\frac{23}{4}a$, $\frac{117}{128}a^{7}+\frac{237}{16}a^{5}-\frac{4863}{32}a^{3}+\frac{973}{4}a$, $\frac{55}{128}a^{7}+\frac{103}{16}a^{5}-\frac{2469}{32}a^{3}+\frac{643}{4}a$, $\frac{463}{128}a^{7}+\frac{129}{64}a^{6}+\frac{569}{8}a^{5}+\frac{129}{4}a^{4}-\frac{11429}{32}a^{3}-\frac{6063}{16}a^{2}-\frac{547}{2}a-\frac{541}{2}$, $\frac{1562713}{16}a^{7}+\frac{2685873}{16}a^{6}+\frac{14809897}{8}a^{5}+\frac{25454355}{8}a^{4}-\frac{45321365}{4}a^{3}-19473054a^{2}-8464624a-14547911$
|
| |
| Regulator: | \( 996576.65783 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{2}\cdot 996576.65783 \cdot 1}{2\cdot\sqrt{3334657800278016}}\cr\approx \mathstrut & 5.4504805933 \end{aligned}\] (assuming GRH)
Galois group
$C_2^2\wr C_2$ (as 8T18):
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_2^2 \wr C_2$ |
| Character table for $C_2^2 \wr C_2$ |
Intermediate fields
| \(\Q(\sqrt{67}) \), 4.2.861888.2, 4.4.14436624.1, 4.2.19248832.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Minimal sibling: | 8.4.3334657800278016.1 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.4.0.1}{4} }^{2}$ | ${\href{/padicField/7.2.0.1}{2} }^{2}{,}\,{\href{/padicField/7.1.0.1}{1} }^{4}$ | ${\href{/padicField/11.2.0.1}{2} }^{2}{,}\,{\href{/padicField/11.1.0.1}{1} }^{4}$ | ${\href{/padicField/13.4.0.1}{4} }^{2}$ | ${\href{/padicField/17.2.0.1}{2} }^{2}{,}\,{\href{/padicField/17.1.0.1}{1} }^{4}$ | ${\href{/padicField/19.2.0.1}{2} }^{4}$ | ${\href{/padicField/23.4.0.1}{4} }^{2}$ | ${\href{/padicField/29.2.0.1}{2} }^{2}{,}\,{\href{/padicField/29.1.0.1}{1} }^{4}$ | ${\href{/padicField/31.2.0.1}{2} }^{4}$ | ${\href{/padicField/37.2.0.1}{2} }^{4}$ | ${\href{/padicField/41.4.0.1}{4} }^{2}$ | ${\href{/padicField/43.2.0.1}{2} }^{4}$ | ${\href{/padicField/47.4.0.1}{4} }^{2}$ | ${\href{/padicField/53.4.0.1}{4} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.4.6a1.2 | $x^{4} + 2 x^{3} + 6$ | $4$ | $1$ | $6$ | $D_{4}$ | $$[2, 2]^{2}$$ |
| 2.1.4.6a1.2 | $x^{4} + 2 x^{3} + 6$ | $4$ | $1$ | $6$ | $D_{4}$ | $$[2, 2]^{2}$$ | |
|
\(3\)
| 3.1.2.1a1.1 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 3.2.1.0a1.1 | $x^{2} + 2 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 3.2.1.0a1.1 | $x^{2} + 2 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 3.1.2.1a1.1 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
|
\(67\)
| 67.2.4.6a1.2 | $x^{8} + 252 x^{7} + 23822 x^{6} + 1001700 x^{5} + 15848241 x^{4} + 2003400 x^{3} + 95288 x^{2} + 2016 x + 83$ | $4$ | $2$ | $6$ | $D_4$ | $$[\ ]_{4}^{2}$$ |