Normalized defining polynomial
\( x^{8} - 2x^{7} + 56x^{5} - 70x^{4} + 42x^{3} - 89x^{2} + 40x - 3 \)
Invariants
Degree: | $8$ |
| |
Signature: | $[4, 2]$ |
| |
Discriminant: |
\(16402500000000\)
\(\medspace = 2^{8}\cdot 3^{8}\cdot 5^{10}\)
|
| |
Root discriminant: | \(44.86\) |
| |
Galois root discriminant: | $2^{7/4}3^{4/3}5^{39/20}\approx 335.7033490039568$ | ||
Ramified primes: |
\(2\), \(3\), \(5\)
|
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$: | $C_1$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
This field has no CM subfields. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{3}a^{4}+\frac{1}{3}a$, $\frac{1}{9}a^{5}+\frac{1}{9}a^{4}+\frac{1}{3}a^{3}+\frac{1}{9}a^{2}+\frac{4}{9}a-\frac{1}{3}$, $\frac{1}{45}a^{6}-\frac{1}{45}a^{5}-\frac{1}{9}a^{4}-\frac{1}{9}a^{3}+\frac{4}{9}a^{2}-\frac{8}{45}a-\frac{4}{15}$, $\frac{1}{135}a^{7}-\frac{2}{45}a^{5}-\frac{2}{27}a^{4}+\frac{4}{9}a^{3}+\frac{4}{45}a^{2}+\frac{5}{27}a-\frac{19}{45}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $3$ |
Class group and class number
Ideal class group: | Trivial group, which has order $1$ |
| |
Narrow class group: | $C_{2}$, which has order $2$ |
|
Unit group
Rank: | $5$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$\frac{17}{27}a^{7}-\frac{52}{45}a^{6}-\frac{8}{45}a^{5}+\frac{952}{27}a^{4}-\frac{343}{9}a^{3}+\frac{188}{9}a^{2}-\frac{7142}{135}a+\frac{749}{45}$, $\frac{2}{3}a^{7}-\frac{17}{15}a^{6}-\frac{8}{15}a^{5}+\frac{112}{3}a^{4}-\frac{106}{3}a^{3}+\frac{20}{3}a^{2}-\frac{839}{15}a-\frac{2}{5}$, $\frac{151}{135}a^{7}-\frac{91}{45}a^{6}-\frac{9}{5}a^{5}+\frac{1777}{27}a^{4}-\frac{595}{9}a^{3}-\frac{722}{15}a^{2}+\frac{4279}{135}a-\frac{97}{45}$, $\frac{53}{135}a^{7}-\frac{3}{5}a^{6}-\frac{14}{45}a^{5}+\frac{590}{27}a^{4}-\frac{154}{9}a^{3}+\frac{322}{45}a^{2}-\frac{4492}{135}a+\frac{247}{45}$, $\frac{2339}{135}a^{7}-\frac{248}{9}a^{6}-\frac{508}{45}a^{5}+\frac{26072}{27}a^{4}-\frac{2452}{3}a^{3}+\frac{17681}{45}a^{2}-\frac{37286}{27}a+\frac{5704}{45}$
|
| |
Regulator: | \( 26855.0139903 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{2}\cdot 26855.0139903 \cdot 1}{2\cdot\sqrt{16402500000000}}\cr\approx \mathstrut & 2.09420929794 \end{aligned}\]
Galois group
A non-solvable group of order 20160 |
The 14 conjugacy class representatives for $A_8$ |
Character table for $A_8$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
Degree 15 siblings: | deg 15, deg 15 |
Degree 28 sibling: | deg 28 |
Degree 35 sibling: | deg 35 |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | R | ${\href{/padicField/7.6.0.1}{6} }{,}\,{\href{/padicField/7.2.0.1}{2} }$ | ${\href{/padicField/11.7.0.1}{7} }{,}\,{\href{/padicField/11.1.0.1}{1} }$ | ${\href{/padicField/13.4.0.1}{4} }^{2}$ | ${\href{/padicField/17.7.0.1}{7} }{,}\,{\href{/padicField/17.1.0.1}{1} }$ | ${\href{/padicField/19.7.0.1}{7} }{,}\,{\href{/padicField/19.1.0.1}{1} }$ | ${\href{/padicField/23.6.0.1}{6} }{,}\,{\href{/padicField/23.2.0.1}{2} }$ | ${\href{/padicField/29.4.0.1}{4} }{,}\,{\href{/padicField/29.2.0.1}{2} }{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | ${\href{/padicField/31.4.0.1}{4} }{,}\,{\href{/padicField/31.2.0.1}{2} }{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ | ${\href{/padicField/37.5.0.1}{5} }{,}\,{\href{/padicField/37.3.0.1}{3} }$ | ${\href{/padicField/41.7.0.1}{7} }{,}\,{\href{/padicField/41.1.0.1}{1} }$ | ${\href{/padicField/43.4.0.1}{4} }{,}\,{\href{/padicField/43.2.0.1}{2} }{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ | ${\href{/padicField/47.7.0.1}{7} }{,}\,{\href{/padicField/47.1.0.1}{1} }$ | ${\href{/padicField/53.7.0.1}{7} }{,}\,{\href{/padicField/53.1.0.1}{1} }$ | ${\href{/padicField/59.7.0.1}{7} }{,}\,{\href{/padicField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.4.2.8a5.2 | $x^{8} + 2 x^{7} + 4 x^{5} + 6 x^{4} + 2 x^{3} + 7 x^{2} + 6 x + 5$ | $2$ | $4$ | $8$ | $C_2^3: C_4$ | $$[2, 2, 2]^{4}$$ |
\(3\)
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
$\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
3.1.3.4a2.1 | $x^{3} + 6 x^{2} + 3$ | $3$ | $1$ | $4$ | $C_3$ | $$[2]$$ | |
3.1.3.4a2.2 | $x^{3} + 6 x^{2} + 12$ | $3$ | $1$ | $4$ | $C_3$ | $$[2]$$ | |
\(5\)
| $\Q_{5}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
5.1.2.1a1.1 | $x^{2} + 5$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
5.1.5.9a1.3 | $x^{5} + 50 x + 5$ | $5$ | $1$ | $9$ | $F_5$ | $$[\frac{9}{4}]_{4}$$ |