Normalized defining polynomial
\( x^{8} - 32x^{6} + 183x^{4} - 1608x^{3} - 6872x^{2} - 6432x + 880 \)
Invariants
| Degree: | $8$ |
| |
| Signature: | $[4, 2]$ |
| |
| Discriminant: |
\(1055106569619216\)
\(\medspace = 2^{4}\cdot 3^{6}\cdot 67^{6}\)
|
| |
| Root discriminant: | \(75.49\) |
| |
| Galois root discriminant: | $2\cdot 3^{3/4}67^{3/4}\approx 106.76454135395933$ | ||
| Ramified primes: |
\(2\), \(3\), \(67\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2^2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{4}a^{4}-\frac{1}{4}a^{3}-\frac{1}{4}a^{2}-\frac{1}{4}a-\frac{1}{2}$, $\frac{1}{4}a^{5}-\frac{1}{2}a^{2}-\frac{1}{4}a-\frac{1}{2}$, $\frac{1}{1120}a^{6}-\frac{1}{280}a^{5}+\frac{29}{280}a^{4}-\frac{19}{140}a^{3}+\frac{143}{1120}a^{2}-\frac{31}{280}a-\frac{5}{56}$, $\frac{1}{8960}a^{7}+\frac{1}{4480}a^{6}+\frac{233}{2240}a^{5}+\frac{33}{1120}a^{4}-\frac{2169}{8960}a^{3}+\frac{1347}{4480}a^{2}+\frac{909}{2240}a-\frac{43}{224}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $2$ |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}$, which has order $2$ (assuming GRH) |
|
Unit group
| Rank: | $5$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{191}{8960}a^{7}-\frac{349}{4480}a^{6}-\frac{897}{2240}a^{5}+\frac{1563}{1120}a^{4}-\frac{10439}{8960}a^{3}-\frac{134663}{4480}a^{2}-\frac{91941}{2240}a+\frac{1207}{224}$, $\frac{143}{1280}a^{7}-\frac{313}{640}a^{6}-\frac{489}{320}a^{5}+\frac{235}{32}a^{4}-\frac{15383}{1280}a^{3}-\frac{86027}{640}a^{2}-\frac{47981}{320}a+\frac{643}{32}$, $\frac{1243}{8960}a^{7}+\frac{4143}{4480}a^{6}-\frac{3461}{2240}a^{5}-\frac{36441}{1120}a^{4}-\frac{1169667}{8960}a^{3}-\frac{1079459}{4480}a^{2}-\frac{407353}{2240}a-\frac{203}{32}$, $\frac{40849}{8960}a^{7}-\frac{10511}{896}a^{6}-\frac{7477}{64}a^{5}+\frac{341421}{1120}a^{4}+\frac{129483}{1792}a^{3}-\frac{33961169}{4480}a^{2}-\frac{3751053}{320}a+\frac{341905}{224}$, $\frac{157333}{1792}a^{7}-\frac{139557}{640}a^{6}-\frac{5079047}{2240}a^{5}+\frac{6309309}{1120}a^{4}+\frac{18588191}{8960}a^{3}-\frac{93635231}{640}a^{2}-\frac{537175187}{2240}a+\frac{6965769}{224}$
|
| |
| Regulator: | \( 470281.436754 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{2}\cdot 470281.436754 \cdot 1}{2\cdot\sqrt{1055106569619216}}\cr\approx \mathstrut & 4.57255982698 \end{aligned}\] (assuming GRH)
Galois group
$C_2^2\wr C_2$ (as 8T18):
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_2^2 \wr C_2$ |
| Character table for $C_2^2 \wr C_2$ |
Intermediate fields
| \(\Q(\sqrt{201}) \), 4.2.32482404.2, 4.2.121203.2, 4.4.10827468.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Minimal sibling: | 8.4.1055106569619216.2 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.2.0.1}{2} }^{2}{,}\,{\href{/padicField/5.1.0.1}{1} }^{4}$ | ${\href{/padicField/7.2.0.1}{2} }^{4}$ | ${\href{/padicField/11.2.0.1}{2} }^{2}{,}\,{\href{/padicField/11.1.0.1}{1} }^{4}$ | ${\href{/padicField/13.4.0.1}{4} }^{2}$ | ${\href{/padicField/17.4.0.1}{4} }^{2}$ | ${\href{/padicField/19.2.0.1}{2} }^{4}$ | ${\href{/padicField/23.4.0.1}{4} }^{2}$ | ${\href{/padicField/29.4.0.1}{4} }^{2}$ | ${\href{/padicField/31.2.0.1}{2} }^{4}$ | ${\href{/padicField/37.2.0.1}{2} }^{4}$ | ${\href{/padicField/41.2.0.1}{2} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }^{4}$ | ${\href{/padicField/43.2.0.1}{2} }^{4}$ | ${\href{/padicField/47.4.0.1}{4} }^{2}$ | ${\href{/padicField/53.2.0.1}{2} }^{2}{,}\,{\href{/padicField/53.1.0.1}{1} }^{4}$ | ${\href{/padicField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.2.2a1.2 | $x^{2} + 2 x + 6$ | $2$ | $1$ | $2$ | $C_2$ | $$[2]$$ |
| 2.1.2.2a1.2 | $x^{2} + 2 x + 6$ | $2$ | $1$ | $2$ | $C_2$ | $$[2]$$ | |
| 2.2.1.0a1.1 | $x^{2} + x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 2.2.1.0a1.1 | $x^{2} + x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
|
\(3\)
| 3.2.4.6a1.2 | $x^{8} + 8 x^{7} + 32 x^{6} + 80 x^{5} + 136 x^{4} + 160 x^{3} + 128 x^{2} + 64 x + 19$ | $4$ | $2$ | $6$ | $D_4$ | $$[\ ]_{4}^{2}$$ |
|
\(67\)
| 67.2.4.6a1.2 | $x^{8} + 252 x^{7} + 23822 x^{6} + 1001700 x^{5} + 15848241 x^{4} + 2003400 x^{3} + 95288 x^{2} + 2016 x + 83$ | $4$ | $2$ | $6$ | $D_4$ | $$[\ ]_{4}^{2}$$ |