Normalized defining polynomial
\( x^{8} + 2x^{6} + 3x^{4} - 2x^{2} - 1 \)
Invariants
| Degree: | $8$ |
| |
| Signature: | $[2, 3]$ |
| |
| Discriminant: |
\(-6879707136\)
\(\medspace = -\,2^{20}\cdot 3^{8}\)
|
| |
| Root discriminant: | \(16.97\) |
| |
| Galois root discriminant: | $2^{51/16}3^{4/3}\approx 39.41801805957117$ | ||
| Ramified primes: |
\(2\), \(3\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-1}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$
| Monogenic: | Yes | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $4$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$a$, $a^{7}-a^{6}+2a^{5}-2a^{4}+3a^{3}-2a^{2}-3a+3$, $a^{7}+a^{6}+2a^{5}+2a^{4}+3a^{3}+2a^{2}-3a-3$, $3a^{7}+3a^{6}+8a^{5}+7a^{4}+14a^{3}+13a^{2}+5a+3$
|
| |
| Regulator: | \( 104.599845355 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{3}\cdot 104.599845355 \cdot 1}{2\cdot\sqrt{6879707136}}\cr\approx \mathstrut & 0.625627265778 \end{aligned}\]
Galois group
| A solvable group of order 192 |
| The 13 conjugacy class representatives for $Q_8:S_4$ |
| Character table for $Q_8:S_4$ |
Intermediate fields
| 4.2.5184.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 sibling: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.6.0.1}{6} }{,}\,{\href{/padicField/5.2.0.1}{2} }$ | ${\href{/padicField/7.8.0.1}{8} }$ | ${\href{/padicField/11.8.0.1}{8} }$ | ${\href{/padicField/13.6.0.1}{6} }{,}\,{\href{/padicField/13.2.0.1}{2} }$ | ${\href{/padicField/17.6.0.1}{6} }{,}\,{\href{/padicField/17.2.0.1}{2} }$ | ${\href{/padicField/19.8.0.1}{8} }$ | ${\href{/padicField/23.8.0.1}{8} }$ | ${\href{/padicField/29.3.0.1}{3} }^{2}{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | ${\href{/padicField/31.4.0.1}{4} }{,}\,{\href{/padicField/31.2.0.1}{2} }^{2}$ | ${\href{/padicField/37.3.0.1}{3} }^{2}{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ | ${\href{/padicField/41.2.0.1}{2} }^{4}$ | ${\href{/padicField/43.8.0.1}{8} }$ | ${\href{/padicField/47.4.0.1}{4} }{,}\,{\href{/padicField/47.1.0.1}{1} }^{4}$ | ${\href{/padicField/53.4.0.1}{4} }^{2}$ | ${\href{/padicField/59.2.0.1}{2} }^{3}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.2.4.20a2.20 | $x^{8} + 8 x^{7} + 22 x^{6} + 40 x^{5} + 59 x^{4} + 64 x^{3} + 66 x^{2} + 40 x + 23$ | $4$ | $2$ | $20$ | $(C_4^2 : C_2):C_2$ | $$[2, 2, 3, \frac{7}{2}, \frac{7}{2}]^{2}$$ |
|
\(3\)
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| 3.2.3.8a1.1 | $x^{6} + 6 x^{5} + 21 x^{4} + 44 x^{3} + 60 x^{2} + 48 x + 23$ | $3$ | $2$ | $8$ | $S_3$ | $$[2]^{2}$$ |
Artin representations
| Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| *192 | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
| 1.4.2t1.a.a | $1$ | $ 2^{2}$ | \(\Q(\sqrt{-1}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
| 2.324.3t2.b.a | $2$ | $ 2^{2} \cdot 3^{4}$ | 3.1.324.1 | $S_3$ (as 3T2) | $1$ | $0$ | |
| 3.20736.6t8.g.a | $3$ | $ 2^{8} \cdot 3^{4}$ | 4.2.5184.1 | $S_4$ (as 4T5) | $1$ | $-1$ | |
| 3.82944.4t5.f.a | $3$ | $ 2^{10} \cdot 3^{4}$ | 4.2.82944.1 | $S_4$ (as 4T5) | $1$ | $1$ | |
| 3.82944.6t8.p.a | $3$ | $ 2^{10} \cdot 3^{4}$ | 4.2.82944.2 | $S_4$ (as 4T5) | $1$ | $-1$ | |
| 3.82944.4t5.e.a | $3$ | $ 2^{10} \cdot 3^{4}$ | 4.2.82944.2 | $S_4$ (as 4T5) | $1$ | $1$ | |
| 3.82944.6t8.q.a | $3$ | $ 2^{10} \cdot 3^{4}$ | 4.2.82944.1 | $S_4$ (as 4T5) | $1$ | $-1$ | |
| *192 | 3.5184.4t5.c.a | $3$ | $ 2^{6} \cdot 3^{4}$ | 4.2.5184.1 | $S_4$ (as 4T5) | $1$ | $1$ |
| *192 | 4.1327104.8t40.e.a | $4$ | $ 2^{14} \cdot 3^{4}$ | 8.2.6879707136.4 | $Q_8:S_4$ (as 8T40) | $1$ | $0$ |
| 4.1327104.8t40.f.a | $4$ | $ 2^{14} \cdot 3^{4}$ | 8.2.6879707136.4 | $Q_8:S_4$ (as 8T40) | $1$ | $0$ | |
| 6.1719926784.8t34.a.a | $6$ | $ 2^{18} \cdot 3^{8}$ | 8.0.6879707136.2 | $V_4^2:S_3$ (as 8T34) | $1$ | $0$ | |
| 8.142...096.24t332.c.a | $8$ | $ 2^{28} \cdot 3^{12}$ | 8.2.6879707136.4 | $Q_8:S_4$ (as 8T40) | $1$ | $0$ |