Normalized defining polynomial
\( x^{8} - x^{7} + x^{6} + x^{5} - 3x^{4} + 4x^{3} - 4x^{2} + 3x - 1 \)
Invariants
| Degree: | $8$ |
| |
| Signature: | $[2, 3]$ |
| |
| Discriminant: |
\(-4761667\)
\(\medspace = -\,23\cdot 207029\)
|
| |
| Root discriminant: | \(6.83\) |
| |
| Galois root discriminant: | $23^{1/2}207029^{1/2}\approx 2182.1244235835866$ | ||
| Ramified primes: |
\(23\), \(207029\)
|
| |
| Discriminant root field: | $\Q(\sqrt{-4761667}$) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$
| Monogenic: | Yes | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $4$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$a^{7}+a^{5}+2a^{4}-a^{3}+3a^{2}-2a+1$, $a^{7}+a^{6}-a^{5}-a^{4}+3a^{3}-4a^{2}+4a-3$, $2a^{7}+a^{6}-a^{5}-3a^{4}+4a^{3}-5a^{2}+4a-3$, $a^{7}-a^{5}-a^{4}+2a^{3}-2a^{2}+3a-2$
|
| |
| Regulator: | \( 0.892409675427044 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{3}\cdot 0.892409675427044 \cdot 1}{2\cdot\sqrt{4761667}}\cr\approx \mathstrut & 0.202887065536078 \end{aligned}\]
Galois group
| A non-solvable group of order 40320 |
| The 22 conjugacy class representatives for $S_8$ |
| Character table for $S_8$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Degree 16 sibling: | data not computed |
| Degree 28 sibling: | data not computed |
| Degree 30 sibling: | data not computed |
| Degree 35 sibling: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.8.0.1}{8} }$ | ${\href{/padicField/3.8.0.1}{8} }$ | ${\href{/padicField/5.8.0.1}{8} }$ | ${\href{/padicField/7.8.0.1}{8} }$ | ${\href{/padicField/11.8.0.1}{8} }$ | ${\href{/padicField/13.7.0.1}{7} }{,}\,{\href{/padicField/13.1.0.1}{1} }$ | ${\href{/padicField/17.6.0.1}{6} }{,}\,{\href{/padicField/17.2.0.1}{2} }$ | ${\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}$ | R | ${\href{/padicField/29.6.0.1}{6} }{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | ${\href{/padicField/31.2.0.1}{2} }^{3}{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ | ${\href{/padicField/37.5.0.1}{5} }{,}\,{\href{/padicField/37.1.0.1}{1} }^{3}$ | ${\href{/padicField/41.7.0.1}{7} }{,}\,{\href{/padicField/41.1.0.1}{1} }$ | ${\href{/padicField/43.3.0.1}{3} }{,}\,{\href{/padicField/43.2.0.1}{2} }^{2}{,}\,{\href{/padicField/43.1.0.1}{1} }$ | ${\href{/padicField/47.8.0.1}{8} }$ | ${\href{/padicField/53.5.0.1}{5} }{,}\,{\href{/padicField/53.2.0.1}{2} }{,}\,{\href{/padicField/53.1.0.1}{1} }$ | ${\href{/padicField/59.7.0.1}{7} }{,}\,{\href{/padicField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(23\)
| 23.1.2.1a1.2 | $x^{2} + 115$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 23.6.1.0a1.1 | $x^{6} + x^{4} + 9 x^{3} + 9 x^{2} + x + 5$ | $1$ | $6$ | $0$ | $C_6$ | $$[\ ]^{6}$$ | |
|
\(207029\)
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $4$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ |