Normalized defining polynomial
\( x^{8} - 30x^{6} + 375x^{4} - 2750x^{2} - 3025 \)
Invariants
| Degree: | $8$ |
| |
| Signature: | $[2, 3]$ |
| |
| Discriminant: |
\(-1982464000000\)
\(\medspace = -\,2^{20}\cdot 5^{6}\cdot 11^{2}\)
|
| |
| Root discriminant: | \(34.45\) |
| |
| Galois root discriminant: | $2^{51/16}5^{3/4}11^{1/2}\approx 101.03153630618483$ | ||
| Ramified primes: |
\(2\), \(5\), \(11\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-1}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{5}a^{4}$, $\frac{1}{5}a^{5}$, $\frac{1}{110935}a^{6}-\frac{9149}{110935}a^{4}+\frac{10272}{22187}a^{2}+\frac{236}{2017}$, $\frac{1}{110935}a^{7}-\frac{9149}{110935}a^{5}+\frac{10272}{22187}a^{3}+\frac{236}{2017}a$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{2}$, which has order $2$ |
| |
| Narrow class group: | $C_{2}\times C_{2}$, which has order $4$ |
|
Unit group
| Rank: | $4$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{2}{10085}a^{6}-\frac{29}{2017}a^{4}+\frac{374}{2017}a^{2}-\frac{859}{2017}$, $\frac{119}{110935}a^{6}-\frac{1568}{110935}a^{4}+\frac{2083}{22187}a^{2}-\frac{154}{2017}$, $\frac{326}{110935}a^{7}+\frac{54}{10085}a^{6}-\frac{9516}{110935}a^{5}-\frac{1898}{10085}a^{4}+\frac{20622}{22187}a^{3}+\frac{6064}{2017}a^{2}+\frac{290}{2017}a+\frac{5045}{2017}$, $\frac{421}{22187}a^{7}-\frac{747}{10085}a^{6}-\frac{22516}{110935}a^{5}+\frac{1755}{2017}a^{4}+\frac{56796}{22187}a^{3}-\frac{26737}{2017}a^{2}+\frac{6649}{2017}a-\frac{29113}{2017}$
|
| |
| Regulator: | \( 470.30491588 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{3}\cdot 470.30491588 \cdot 2}{2\cdot\sqrt{1982464000000}}\cr\approx \mathstrut & 0.33141828059 \end{aligned}\]
Galois group
| A solvable group of order 64 |
| The 16 conjugacy class representatives for $(C_4^2 : C_2):C_2$ |
| Character table for $(C_4^2 : C_2):C_2$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.2.1600.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Minimal sibling: | 8.2.495616000000.2 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.8.0.1}{8} }$ | R | ${\href{/padicField/7.8.0.1}{8} }$ | R | ${\href{/padicField/13.4.0.1}{4} }^{2}$ | ${\href{/padicField/17.4.0.1}{4} }^{2}$ | ${\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}$ | ${\href{/padicField/23.8.0.1}{8} }$ | ${\href{/padicField/29.2.0.1}{2} }^{4}$ | ${\href{/padicField/31.2.0.1}{2} }^{3}{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }^{2}$ | ${\href{/padicField/41.4.0.1}{4} }^{2}$ | ${\href{/padicField/43.8.0.1}{8} }$ | ${\href{/padicField/47.8.0.1}{8} }$ | ${\href{/padicField/53.2.0.1}{2} }^{4}$ | ${\href{/padicField/59.4.0.1}{4} }{,}\,{\href{/padicField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.2.4.20a2.19 | $x^{8} + 8 x^{7} + 22 x^{6} + 40 x^{5} + 51 x^{4} + 48 x^{3} + 42 x^{2} + 24 x + 15$ | $4$ | $2$ | $20$ | $(C_4^2 : C_2):C_2$ | $$[2, 2, 3, \frac{7}{2}, \frac{7}{2}]^{2}$$ |
|
\(5\)
| 5.1.4.3a1.1 | $x^{4} + 5$ | $4$ | $1$ | $3$ | $C_4$ | $$[\ ]_{4}$$ |
| 5.1.4.3a1.4 | $x^{4} + 20$ | $4$ | $1$ | $3$ | $C_4$ | $$[\ ]_{4}$$ | |
|
\(11\)
| 11.2.1.0a1.1 | $x^{2} + 7 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
| 11.2.1.0a1.1 | $x^{2} + 7 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 11.2.2.2a1.1 | $x^{4} + 14 x^{3} + 53 x^{2} + 39 x + 4$ | $2$ | $2$ | $2$ | $C_4$ | $$[\ ]_{2}^{2}$$ |