Normalized defining polynomial
\( x^{8} + 4x^{6} + 148x^{4} - 1984x^{2} + 5184 \)
Invariants
| Degree: | $8$ |
| |
| Signature: | $[0, 4]$ |
| |
| Discriminant: |
\(8395180207046656\)
\(\medspace = 2^{16}\cdot 71^{6}\)
|
| |
| Root discriminant: | \(97.84\) |
| |
| Galois root discriminant: | $2^{2}71^{3/4}\approx 97.83714091452357$ | ||
| Ramified primes: |
\(2\), \(71\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2}a^{2}$, $\frac{1}{4}a^{3}-\frac{1}{2}a$, $\frac{1}{8}a^{4}-\frac{1}{4}a^{2}$, $\frac{1}{16}a^{5}-\frac{1}{8}a^{3}-\frac{1}{2}a$, $\frac{1}{64}a^{6}+\frac{1}{32}a^{4}-\frac{1}{4}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{576}a^{7}-\frac{7}{288}a^{5}-\frac{1}{18}a^{3}-\frac{4}{9}a$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{2}\times C_{2}\times C_{6}\times C_{6}$, which has order $144$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}\times C_{2}\times C_{6}\times C_{6}$, which has order $144$ (assuming GRH) |
|
Unit group
| Rank: | $3$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{1}{32}a^{7}-\frac{1}{16}a^{6}+\frac{1}{4}a^{5}-\frac{1}{2}a^{4}+\frac{45}{8}a^{3}-\frac{45}{4}a^{2}-\frac{79}{2}a+80$, $\frac{1}{96}a^{7}+\frac{1}{16}a^{6}-\frac{1}{12}a^{5}+\frac{1}{2}a^{4}+\frac{85}{24}a^{3}-\frac{3}{4}a^{2}-\frac{79}{6}a-8$, $\frac{659}{96}a^{7}-\frac{19}{2}a^{6}+\frac{697}{12}a^{5}-82a^{4}+\frac{30587}{24}a^{3}-1785a^{2}-\frac{47651}{6}a+10591$
|
| |
| Regulator: | \( 2466.72291922 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{4}\cdot 2466.72291922 \cdot 144}{2\cdot\sqrt{8395180207046656}}\cr\approx \mathstrut & 3.02104592559 \end{aligned}\] (assuming GRH)
Galois group
| A solvable group of order 24 |
| The 5 conjugacy class representatives for $S_4$ |
| Character table for $S_4$ |
Intermediate fields
| \(\Q(\sqrt{142}) \), 4.0.11453152.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | deg 24 |
| Degree 4 sibling: | 4.0.11453152.1 |
| Degree 6 siblings: | 6.2.733001728.5, 6.2.6505390336.1 |
| Degree 12 siblings: | deg 12, deg 12 |
| Minimal sibling: | 4.0.11453152.1 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.3.0.1}{3} }^{2}{,}\,{\href{/padicField/3.1.0.1}{1} }^{2}$ | ${\href{/padicField/5.4.0.1}{4} }^{2}$ | ${\href{/padicField/7.3.0.1}{3} }^{2}{,}\,{\href{/padicField/7.1.0.1}{1} }^{2}$ | ${\href{/padicField/11.2.0.1}{2} }^{4}$ | ${\href{/padicField/13.3.0.1}{3} }^{2}{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ | ${\href{/padicField/17.2.0.1}{2} }^{4}$ | ${\href{/padicField/19.3.0.1}{3} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.3.0.1}{3} }^{2}{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ | ${\href{/padicField/29.2.0.1}{2} }^{4}$ | ${\href{/padicField/31.3.0.1}{3} }^{2}{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ | ${\href{/padicField/37.2.0.1}{2} }^{4}$ | ${\href{/padicField/41.4.0.1}{4} }^{2}$ | ${\href{/padicField/43.3.0.1}{3} }^{2}{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ | ${\href{/padicField/47.3.0.1}{3} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | ${\href{/padicField/53.2.0.1}{2} }^{4}$ | ${\href{/padicField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.4.8b1.1 | $x^{4} + 2 x^{2} + 4 x + 2$ | $4$ | $1$ | $8$ | $C_2^2$ | $$[2, 3]$$ |
| 2.1.4.8b1.1 | $x^{4} + 2 x^{2} + 4 x + 2$ | $4$ | $1$ | $8$ | $C_2^2$ | $$[2, 3]$$ | |
|
\(71\)
| 71.2.4.6a1.2 | $x^{8} + 276 x^{7} + 28594 x^{6} + 1319832 x^{5} + 23067339 x^{4} + 9238824 x^{3} + 1401106 x^{2} + 94668 x + 2472$ | $4$ | $2$ | $6$ | $D_4$ | $$[\ ]_{4}^{2}$$ |