Normalized defining polynomial
\( x^{8} + 103740x^{6} + 2690496900x^{4} + 23259345700500x^{2} + 50269260895205625 \)
Invariants
| Degree: | $8$ |
| |
| Signature: | $[0, 4]$ |
| |
| Discriminant: |
\(68313638104136668938240000\)
\(\medspace = 2^{24}\cdot 3^{6}\cdot 5^{4}\cdot 7^{4}\cdot 13^{4}\cdot 19^{4}\)
|
| |
| Root discriminant: | \(1695.56\) |
| |
| Galois root discriminant: | $2^{3}3^{3/4}5^{1/2}7^{1/2}13^{1/2}19^{1/2}\approx 1695.561031763565$ | ||
| Ramified primes: |
\(2\), \(3\), \(5\), \(7\), \(13\), \(19\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$ $=$ $\Gal(K/\Q)$: | $Q_8$ |
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
| Reflex fields: | unavailable$^{8}$ | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{8645}a^{2}$, $\frac{1}{8645}a^{3}$, $\frac{1}{224208075}a^{4}$, $\frac{1}{224208075}a^{5}$, $\frac{1}{1938278808375}a^{6}$, $\frac{1}{1938278808375}a^{7}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{1354}\times C_{1354}$, which has order $234664448$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{1354}\times C_{1354}$, which has order $234664448$ (assuming GRH) |
| |
| Relative class number: | $234664448$ (assuming GRH) |
Unit group
| Rank: | $3$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{1}{224208075}a^{4}+\frac{3}{8645}a^{2}+3$, $\frac{1}{1938278808375}a^{6}+\frac{2}{44841615}a^{4}+\frac{1}{1729}a^{2}+1$, $\frac{1}{1938278808375}a^{6}+\frac{11}{224208075}a^{4}+\frac{9}{8645}a^{2}+6$
|
| |
| Regulator: | \( 21.287188641522963 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{4}\cdot 21.287188641522963 \cdot 234664448}{2\cdot\sqrt{68313638104136668938240000}}\cr\approx \mathstrut & 0.470978820302438 \end{aligned}\] (assuming GRH)
Galois group
| A solvable group of order 8 |
| The 5 conjugacy class representatives for $Q_8$ |
| Character table for $Q_8$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{6}) \), \(\Q(\sqrt{2}, \sqrt{3})\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/padicField/11.4.0.1}{4} }^{2}$ | R | ${\href{/padicField/17.4.0.1}{4} }^{2}$ | R | ${\href{/padicField/23.1.0.1}{1} }^{8}$ | ${\href{/padicField/29.4.0.1}{4} }^{2}$ | ${\href{/padicField/31.4.0.1}{4} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }^{2}$ | ${\href{/padicField/41.4.0.1}{4} }^{2}$ | ${\href{/padicField/43.4.0.1}{4} }^{2}$ | ${\href{/padicField/47.2.0.1}{2} }^{4}$ | ${\href{/padicField/53.4.0.1}{4} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.8.24c1.56 | $x^{8} + 8 x^{7} + 4 x^{6} + 2 x^{4} + 4 x^{2} + 8 x + 14$ | $8$ | $1$ | $24$ | $Q_8$ | $$[2, 3, 4]$$ |
|
\(3\)
| 3.2.4.6a1.3 | $x^{8} + 8 x^{7} + 32 x^{6} + 80 x^{5} + 136 x^{4} + 160 x^{3} + 128 x^{2} + 67 x + 19$ | $4$ | $2$ | $6$ | $Q_8$ | $$[\ ]_{4}^{2}$$ |
|
\(5\)
| 5.2.2.2a1.1 | $x^{4} + 8 x^{3} + 20 x^{2} + 21 x + 4$ | $2$ | $2$ | $2$ | $C_4$ | $$[\ ]_{2}^{2}$$ |
| 5.2.2.2a1.1 | $x^{4} + 8 x^{3} + 20 x^{2} + 21 x + 4$ | $2$ | $2$ | $2$ | $C_4$ | $$[\ ]_{2}^{2}$$ | |
|
\(7\)
| 7.2.2.2a1.1 | $x^{4} + 12 x^{3} + 42 x^{2} + 43 x + 9$ | $2$ | $2$ | $2$ | $C_4$ | $$[\ ]_{2}^{2}$$ |
| 7.2.2.2a1.1 | $x^{4} + 12 x^{3} + 42 x^{2} + 43 x + 9$ | $2$ | $2$ | $2$ | $C_4$ | $$[\ ]_{2}^{2}$$ | |
|
\(13\)
| 13.2.2.2a1.1 | $x^{4} + 24 x^{3} + 148 x^{2} + 61 x + 4$ | $2$ | $2$ | $2$ | $C_4$ | $$[\ ]_{2}^{2}$$ |
| 13.2.2.2a1.1 | $x^{4} + 24 x^{3} + 148 x^{2} + 61 x + 4$ | $2$ | $2$ | $2$ | $C_4$ | $$[\ ]_{2}^{2}$$ | |
|
\(19\)
| 19.2.2.2a1.1 | $x^{4} + 36 x^{3} + 328 x^{2} + 91 x + 4$ | $2$ | $2$ | $2$ | $C_4$ | $$[\ ]_{2}^{2}$$ |
| 19.2.2.2a1.1 | $x^{4} + 36 x^{3} + 328 x^{2} + 91 x + 4$ | $2$ | $2$ | $2$ | $C_4$ | $$[\ ]_{2}^{2}$$ |