Normalized defining polynomial
\( x^{8} - 4x^{7} + 10x^{6} - 15x^{4} - 24x^{3} + 86x^{2} - 80x + 35 \)
Invariants
| Degree: | $8$ |
| |
| Signature: | $[0, 4]$ |
| |
| Discriminant: |
\(6718464000000\)
\(\medspace = 2^{16}\cdot 3^{8}\cdot 5^{6}\)
|
| |
| Root discriminant: | \(40.12\) |
| |
| Galois root discriminant: | $2^{55/24}3^{31/18}5^{23/20}\approx 206.7210676368938$ | ||
| Ramified primes: |
\(2\), \(3\), \(5\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{3}a^{5}+\frac{1}{3}a^{4}+\frac{1}{3}a^{3}+\frac{1}{3}a^{2}+\frac{1}{3}a+\frac{1}{3}$, $\frac{1}{3}a^{6}-\frac{1}{3}$, $\frac{1}{795}a^{7}+\frac{5}{53}a^{6}+\frac{7}{53}a^{5}+\frac{23}{53}a^{4}+\frac{14}{53}a^{3}-\frac{43}{265}a^{2}+\frac{46}{159}a-\frac{13}{53}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
| Rank: | $3$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{9631}{795}a^{7}-\frac{6055}{159}a^{6}+\frac{4347}{53}a^{5}+\frac{4743}{53}a^{4}-\frac{7736}{53}a^{3}-\frac{124488}{265}a^{2}+\frac{112783}{159}a-\frac{15845}{159}$, $\frac{1088}{159}a^{7}-\frac{1155}{53}a^{6}+\frac{8240}{159}a^{5}+\frac{6215}{159}a^{4}-\frac{10444}{159}a^{3}-\frac{32815}{159}a^{2}+\frac{21474}{53}a-\frac{46747}{159}$, $\frac{377}{53}a^{7}+\frac{132}{53}a^{6}-\frac{3304}{159}a^{5}-\frac{2005}{159}a^{4}+\frac{7172}{159}a^{3}-\frac{520}{159}a^{2}-\frac{4393}{159}a+\frac{4334}{159}$
|
| |
| Regulator: | \( 7495.7957377 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{4}\cdot 7495.7957377 \cdot 1}{2\cdot\sqrt{6718464000000}}\cr\approx \mathstrut & 2.2535760784 \end{aligned}\] (assuming GRH)
Galois group
| A non-solvable group of order 20160 |
| The 14 conjugacy class representatives for $A_8$ |
| Character table for $A_8$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Degree 15 siblings: | deg 15, deg 15 |
| Degree 28 sibling: | deg 28 |
| Degree 35 sibling: | deg 35 |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/padicField/7.3.0.1}{3} }{,}\,{\href{/padicField/7.2.0.1}{2} }^{2}{,}\,{\href{/padicField/7.1.0.1}{1} }$ | ${\href{/padicField/11.5.0.1}{5} }{,}\,{\href{/padicField/11.3.0.1}{3} }$ | ${\href{/padicField/13.7.0.1}{7} }{,}\,{\href{/padicField/13.1.0.1}{1} }$ | ${\href{/padicField/17.5.0.1}{5} }{,}\,{\href{/padicField/17.3.0.1}{3} }$ | ${\href{/padicField/19.5.0.1}{5} }{,}\,{\href{/padicField/19.1.0.1}{1} }^{3}$ | ${\href{/padicField/23.7.0.1}{7} }{,}\,{\href{/padicField/23.1.0.1}{1} }$ | ${\href{/padicField/29.4.0.1}{4} }{,}\,{\href{/padicField/29.2.0.1}{2} }{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | ${\href{/padicField/31.4.0.1}{4} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }{,}\,{\href{/padicField/37.2.0.1}{2} }{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ | ${\href{/padicField/41.4.0.1}{4} }{,}\,{\href{/padicField/41.2.0.1}{2} }{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.4.0.1}{4} }^{2}$ | ${\href{/padicField/47.3.0.1}{3} }{,}\,{\href{/padicField/47.2.0.1}{2} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }$ | ${\href{/padicField/53.6.0.1}{6} }{,}\,{\href{/padicField/53.2.0.1}{2} }$ | ${\href{/padicField/59.3.0.1}{3} }{,}\,{\href{/padicField/59.2.0.1}{2} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.2.4.16a1.2 | $x^{8} + 4 x^{7} + 10 x^{6} + 20 x^{5} + 27 x^{4} + 28 x^{3} + 22 x^{2} + 12 x + 7$ | $4$ | $2$ | $16$ | $V_4^2:S_3$ | $$[\frac{4}{3}, \frac{4}{3}, \frac{8}{3}, \frac{8}{3}]_{3}^{2}$$ |
|
\(3\)
| 3.1.2.1a1.2 | $x^{2} + 6$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 3.1.3.4a1.1 | $x^{3} + 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $S_3$ | $$[2]^{2}$$ | |
| 3.1.3.3a1.1 | $x^{3} + 3 x + 3$ | $3$ | $1$ | $3$ | $S_3$ | $$[\frac{3}{2}]_{2}$$ | |
|
\(5\)
| $\Q_{5}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| 5.1.2.1a1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 5.1.5.5a1.2 | $x^{5} + 10 x + 5$ | $5$ | $1$ | $5$ | $F_5$ | $$[\frac{5}{4}]_{4}$$ |