Normalized defining polynomial
\( x^{8} - 4x^{7} + 28x^{6} - 70x^{5} + 148x^{4} - 184x^{3} + 713x^{2} - 632x + 668 \)
Invariants
| Degree: | $8$ |
| |
| Signature: | $[0, 4]$ |
| |
| Discriminant: |
\(593497445410809\)
\(\medspace = 3^{8}\cdot 67^{6}\)
|
| |
| Root discriminant: | \(70.26\) |
| |
| Galois root discriminant: | $3^{4/3}67^{3/4}\approx 101.32527123924812$ | ||
| Ramified primes: |
\(3\), \(67\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | \(\Q(\sqrt{-67}) \) | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{3}a^{3}+\frac{1}{3}a-\frac{1}{3}$, $\frac{1}{12}a^{4}-\frac{1}{6}a^{3}+\frac{1}{3}a^{2}-\frac{1}{4}a+\frac{1}{6}$, $\frac{1}{12}a^{5}+\frac{5}{12}a^{2}-\frac{1}{3}a+\frac{1}{3}$, $\frac{1}{36}a^{6}-\frac{1}{36}a^{4}-\frac{5}{36}a^{3}+\frac{4}{9}a^{2}+\frac{7}{36}a-\frac{7}{18}$, $\frac{1}{4356}a^{7}+\frac{19}{1452}a^{6}-\frac{1}{1089}a^{5}+\frac{49}{4356}a^{4}-\frac{251}{4356}a^{3}-\frac{32}{1089}a^{2}-\frac{43}{99}a+\frac{57}{121}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $2$ |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
| Rank: | $3$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{2671}{2178}a^{7}-\frac{17245}{4356}a^{6}+\frac{69539}{2178}a^{5}-\frac{46075}{726}a^{4}+\frac{490735}{4356}a^{3}-\frac{207457}{2178}a^{2}+\frac{75731}{99}a-\frac{196345}{1089}$, $\frac{2671}{2178}a^{7}-\frac{20149}{4356}a^{6}+\frac{73895}{2178}a^{5}-\frac{115745}{1452}a^{4}+\frac{617785}{4356}a^{3}-\frac{321439}{2178}a^{2}+\frac{318005}{396}a-\frac{1236665}{2178}$, $\frac{2871510793}{2178}a^{7}-\frac{20100575551}{4356}a^{6}+\frac{145404394621}{4356}a^{5}-\frac{104419849225}{1452}a^{4}+\frac{565910580487}{4356}a^{3}-\frac{545656610831}{4356}a^{2}+\frac{309893009765}{396}a-\frac{811716092513}{2178}$
|
| |
| Regulator: | \( 29771.8818436 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{4}\cdot 29771.8818436 \cdot 1}{2\cdot\sqrt{593497445410809}}\cr\approx \mathstrut & 0.952327526417 \end{aligned}\] (assuming GRH)
Galois group
| A solvable group of order 24 |
| The 5 conjugacy class representatives for $S_4$ |
| Character table for $S_4$ |
Intermediate fields
| \(\Q(\sqrt{-67}) \), 4.2.24361803.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | deg 24 |
| Degree 4 sibling: | 4.2.24361803.1 |
| Degree 6 siblings: | 6.2.132211504881.1, 6.0.1973306043.3 |
| Degree 12 siblings: | deg 12, deg 12 |
| Minimal sibling: | 4.2.24361803.1 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.2.0.1}{2} }^{4}$ | R | ${\href{/padicField/5.4.0.1}{4} }^{2}$ | ${\href{/padicField/7.4.0.1}{4} }^{2}$ | ${\href{/padicField/11.2.0.1}{2} }^{4}$ | ${\href{/padicField/13.2.0.1}{2} }^{4}$ | ${\href{/padicField/17.3.0.1}{3} }^{2}{,}\,{\href{/padicField/17.1.0.1}{1} }^{2}$ | ${\href{/padicField/19.3.0.1}{3} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.3.0.1}{3} }^{2}{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ | ${\href{/padicField/29.2.0.1}{2} }^{4}$ | ${\href{/padicField/31.2.0.1}{2} }^{4}$ | ${\href{/padicField/37.2.0.1}{2} }^{4}$ | ${\href{/padicField/41.2.0.1}{2} }^{4}$ | ${\href{/padicField/43.4.0.1}{4} }^{2}$ | ${\href{/padicField/47.2.0.1}{2} }^{4}$ | ${\href{/padicField/53.4.0.1}{4} }^{2}$ | ${\href{/padicField/59.3.0.1}{3} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(3\)
| 3.2.1.0a1.1 | $x^{2} + 2 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
| 3.2.3.8a1.1 | $x^{6} + 6 x^{5} + 21 x^{4} + 44 x^{3} + 60 x^{2} + 48 x + 23$ | $3$ | $2$ | $8$ | $S_3$ | $$[2]^{2}$$ | |
|
\(67\)
| 67.2.4.6a1.2 | $x^{8} + 252 x^{7} + 23822 x^{6} + 1001700 x^{5} + 15848241 x^{4} + 2003400 x^{3} + 95288 x^{2} + 2016 x + 83$ | $4$ | $2$ | $6$ | $D_4$ | $$[\ ]_{4}^{2}$$ |