Normalized defining polynomial
\( x^{8} + x^{6} + 4x^{4} - 3x^{2} + 9 \)
Invariants
| Degree: | $8$ |
| |
| Signature: | $[0, 4]$ |
| |
| Discriminant: |
\(592240896\)
\(\medspace = 2^{8}\cdot 3^{4}\cdot 13^{4}\)
|
| |
| Root discriminant: | \(12.49\) |
| |
| Galois root discriminant: | $2\cdot 3^{1/2}13^{1/2}\approx 12.489995996796797$ | ||
| Ramified primes: |
\(2\), \(3\), \(13\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$ $=$ $\Gal(K/\Q)$: | $D_4$ |
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | \(\Q(\sqrt{-3}, \sqrt{13})\) | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{12}a^{6}+\frac{1}{3}a^{4}+\frac{1}{3}a^{2}-\frac{1}{4}$, $\frac{1}{36}a^{7}+\frac{4}{9}a^{5}-\frac{2}{9}a^{3}-\frac{5}{12}a$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $2$, $3$ |
Class group and class number
| Ideal class group: | $C_{2}$, which has order $2$ |
| |
| Narrow class group: | $C_{2}$, which has order $2$ |
|
Unit group
| Rank: | $3$ |
| |
| Torsion generator: |
\( -\frac{1}{12} a^{6} - \frac{1}{3} a^{4} - \frac{1}{3} a^{2} + \frac{1}{4} \)
(order $6$)
|
| |
| Fundamental units: |
$\frac{1}{6}a^{6}-\frac{1}{3}a^{4}+\frac{2}{3}a^{2}-\frac{1}{2}$, $\frac{5}{18}a^{7}-\frac{1}{12}a^{6}+\frac{4}{9}a^{5}-\frac{1}{3}a^{4}+\frac{7}{9}a^{3}-\frac{1}{3}a^{2}-\frac{1}{6}a+\frac{5}{4}$, $\frac{1}{36}a^{7}+\frac{1}{6}a^{6}+\frac{4}{9}a^{5}+\frac{2}{3}a^{4}+\frac{7}{9}a^{3}+\frac{2}{3}a^{2}+\frac{7}{12}a+\frac{1}{2}$
|
| |
| Regulator: | \( 63.3899064382 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{4}\cdot 63.3899064382 \cdot 2}{6\cdot\sqrt{592240896}}\cr\approx \mathstrut & 1.35322225879 \end{aligned}\]
Galois group
| A solvable group of order 8 |
| The 5 conjugacy class representatives for $D_4$ |
| Character table for $D_4$ |
Intermediate fields
| \(\Q(\sqrt{-39}) \), \(\Q(\sqrt{13}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-3}, \sqrt{13})\), 4.2.8112.1 x2, 4.0.1872.1 x2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 4 siblings: | 4.2.8112.1, 4.0.1872.1 |
| Minimal sibling: | 4.0.1872.1 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.4.0.1}{4} }^{2}$ | ${\href{/padicField/7.2.0.1}{2} }^{4}$ | ${\href{/padicField/11.4.0.1}{4} }^{2}$ | R | ${\href{/padicField/17.2.0.1}{2} }^{4}$ | ${\href{/padicField/19.2.0.1}{2} }^{4}$ | ${\href{/padicField/23.2.0.1}{2} }^{4}$ | ${\href{/padicField/29.2.0.1}{2} }^{4}$ | ${\href{/padicField/31.2.0.1}{2} }^{4}$ | ${\href{/padicField/37.2.0.1}{2} }^{4}$ | ${\href{/padicField/41.4.0.1}{4} }^{2}$ | ${\href{/padicField/43.2.0.1}{2} }^{4}$ | ${\href{/padicField/47.4.0.1}{4} }^{2}$ | ${\href{/padicField/53.2.0.1}{2} }^{4}$ | ${\href{/padicField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.2.2.4a1.2 | $x^{4} + 2 x^{3} + 5 x^{2} + 8 x + 5$ | $2$ | $2$ | $4$ | $C_4$ | $$[2]^{2}$$ |
| 2.2.2.4a1.2 | $x^{4} + 2 x^{3} + 5 x^{2} + 8 x + 5$ | $2$ | $2$ | $4$ | $C_4$ | $$[2]^{2}$$ | |
|
\(3\)
| 3.1.2.1a1.1 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 3.1.2.1a1.1 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 3.1.2.1a1.1 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 3.1.2.1a1.1 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
|
\(13\)
| 13.2.2.2a1.2 | $x^{4} + 24 x^{3} + 148 x^{2} + 48 x + 17$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |
| 13.2.2.2a1.2 | $x^{4} + 24 x^{3} + 148 x^{2} + 48 x + 17$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |
Artin representations
| Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
| * | 1.3.2t1.a.a | $1$ | $ 3 $ | \(\Q(\sqrt{-3}) \) | $C_2$ (as 2T1) | $1$ | $-1$ |
| * | 1.13.2t1.a.a | $1$ | $ 13 $ | \(\Q(\sqrt{13}) \) | $C_2$ (as 2T1) | $1$ | $1$ |
| * | 1.39.2t1.a.a | $1$ | $ 3 \cdot 13 $ | \(\Q(\sqrt{-39}) \) | $C_2$ (as 2T1) | $1$ | $-1$ |
| *2 | 2.624.4t3.c.a | $2$ | $ 2^{4} \cdot 3 \cdot 13 $ | 8.0.592240896.5 | $D_4$ (as 8T4) | $1$ | $0$ |