Normalized defining polynomial
\( x^{8} - 3x^{7} + 13x^{6} + 41x^{5} - 24x^{4} + 92x^{3} + 3168x^{2} - 7248x + 17280 \)
Invariants
| Degree: | $8$ |
| |
| Signature: | $[0, 4]$ |
| |
| Discriminant: |
\(590286108307968\)
\(\medspace = 2^{9}\cdot 3^{2}\cdot 71^{6}\)
|
| |
| Root discriminant: | \(70.21\) |
| |
| Galois root discriminant: | $2^{9/4}3^{1/2}71^{3/4}\approx 201.52172830954643$ | ||
| Ramified primes: |
\(2\), \(3\), \(71\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{2}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | \(\Q(\sqrt{-71}) \) | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{2}a^{4}-\frac{1}{2}a^{2}$, $\frac{1}{4}a^{5}-\frac{1}{4}a^{4}-\frac{1}{4}a^{3}-\frac{1}{4}a^{2}-\frac{1}{2}a$, $\frac{1}{24}a^{6}+\frac{1}{24}a^{5}+\frac{5}{24}a^{4}+\frac{1}{24}a^{3}-\frac{1}{3}a^{2}$, $\frac{1}{16657104}a^{7}+\frac{128729}{16657104}a^{6}-\frac{296249}{5552368}a^{5}+\frac{176051}{5552368}a^{4}+\frac{4787}{28137}a^{3}-\frac{2834}{1041069}a^{2}-\frac{947}{9379}a-\frac{35745}{347023}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $2$, $3$ |
Class group and class number
| Ideal class group: | $C_{21}$, which has order $21$ (assuming GRH) |
| |
| Narrow class group: | $C_{21}$, which has order $21$ (assuming GRH) |
|
Unit group
| Rank: | $3$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{1561315}{16657104}a^{7}-\frac{2262505}{16657104}a^{6}+\frac{3396897}{5552368}a^{5}+\frac{16358237}{5552368}a^{4}-\frac{150031}{112548}a^{3}-\frac{8552012}{1041069}a^{2}+\frac{1647233}{9379}a-\frac{246658099}{347023}$, $\frac{26215979}{8328552}a^{7}-\frac{66205919}{8328552}a^{6}-\frac{46038333}{2776184}a^{5}+\frac{1765289679}{2776184}a^{4}-\frac{351203995}{112548}a^{3}+\frac{24057282317}{2082138}a^{2}-\frac{198291272}{9379}a+\frac{9696133907}{347023}$, $\frac{128396100757}{16657104}a^{7}-\frac{1461935133}{5552368}a^{6}+\frac{771020487229}{16657104}a^{5}+\frac{7489561182569}{16657104}a^{4}+\frac{31103212655}{37516}a^{3}+\frac{36791495597}{1041069}a^{2}+\frac{173368168945}{9379}a-\frac{664588830359}{347023}$
|
| |
| Regulator: | \( 26205.0365017 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{4}\cdot 26205.0365017 \cdot 21}{2\cdot\sqrt{590286108307968}}\cr\approx \mathstrut & 17.6507132734 \end{aligned}\] (assuming GRH)
Galois group
$C_2\wr D_4$ (as 8T35):
| A solvable group of order 128 |
| The 20 conjugacy class representatives for $C_2 \wr C_2\wr C_2$ |
| Character table for $C_2 \wr C_2\wr C_2$ |
Intermediate fields
| \(\Q(\sqrt{-71}) \), 4.0.1073733.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Minimal sibling: | 8.0.88681481060352.2 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.2.0.1}{2} }^{3}{,}\,{\href{/padicField/5.1.0.1}{1} }^{2}$ | ${\href{/padicField/7.4.0.1}{4} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }{,}\,{\href{/padicField/11.2.0.1}{2} }^{2}$ | ${\href{/padicField/13.8.0.1}{8} }$ | ${\href{/padicField/17.2.0.1}{2} }^{4}$ | ${\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}$ | ${\href{/padicField/23.2.0.1}{2} }^{4}$ | ${\href{/padicField/29.2.0.1}{2} }^{3}{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | ${\href{/padicField/31.4.0.1}{4} }^{2}$ | ${\href{/padicField/37.2.0.1}{2} }{,}\,{\href{/padicField/37.1.0.1}{1} }^{6}$ | ${\href{/padicField/41.4.0.1}{4} }^{2}$ | ${\href{/padicField/43.2.0.1}{2} }^{3}{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ | ${\href{/padicField/47.4.0.1}{4} }^{2}$ | ${\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.2.0.1}{2} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }{,}\,{\href{/padicField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| 2.1.2.3a1.2 | $x^{2} + 10$ | $2$ | $1$ | $3$ | $C_2$ | $$[3]$$ | |
| 2.2.2.6a1.4 | $x^{4} + 6 x^{3} + 7 x^{2} + 14 x + 3$ | $2$ | $2$ | $6$ | $D_{4}$ | $$[2, 3]^{2}$$ | |
|
\(3\)
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| 3.1.2.1a1.1 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 3.2.1.0a1.1 | $x^{2} + 2 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 3.1.2.1a1.1 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
|
\(71\)
| 71.2.4.6a1.2 | $x^{8} + 276 x^{7} + 28594 x^{6} + 1319832 x^{5} + 23067339 x^{4} + 9238824 x^{3} + 1401106 x^{2} + 94668 x + 2472$ | $4$ | $2$ | $6$ | $D_4$ | $$[\ ]_{4}^{2}$$ |