Normalized defining polynomial
\( x^{8} - 4x^{7} - 28x^{6} + 98x^{5} + 368x^{4} - 52x^{3} + 1811x^{2} + 9308x + 10798 \)
Invariants
| Degree: | $8$ |
| |
| Signature: | $[0, 4]$ |
| |
| Discriminant: |
\(524698762940416\)
\(\medspace = 2^{12}\cdot 71^{6}\)
|
| |
| Root discriminant: | \(69.18\) |
| |
| Galois root discriminant: | $2^{2}71^{3/4}\approx 97.83714091452357$ | ||
| Ramified primes: |
\(2\), \(71\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2^2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | \(\Q(\sqrt{-71}) \) | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{44277102660}a^{7}+\frac{114137003}{8855420532}a^{6}+\frac{8807991097}{44277102660}a^{5}-\frac{19856956799}{44277102660}a^{4}-\frac{16002044273}{44277102660}a^{3}-\frac{19961978399}{44277102660}a^{2}+\frac{190785295}{632530038}a+\frac{8930278979}{22138551330}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $3$ |
Class group and class number
| Ideal class group: | $C_{35}$, which has order $35$ |
| |
| Narrow class group: | $C_{35}$, which has order $35$ |
|
Unit group
| Rank: | $3$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{2320149}{2951806844}a^{7}-\frac{18304781}{2951806844}a^{6}+\frac{2958505}{2951806844}a^{5}+\frac{230880077}{2951806844}a^{4}-\frac{112346705}{2951806844}a^{3}+\frac{222020189}{2951806844}a^{2}+\frac{279387719}{210843346}a+\frac{2863957909}{1475903422}$, $\frac{167570}{737951711}a^{7}+\frac{1638482}{737951711}a^{6}-\frac{10495480}{737951711}a^{5}-\frac{82295742}{737951711}a^{4}+\frac{103558806}{737951711}a^{3}+\frac{1596499608}{737951711}a^{2}+\frac{526785236}{105421673}a+\frac{2867415557}{737951711}$, $\frac{28\cdots 33}{22138551330}a^{7}-\frac{36\cdots 41}{4427710266}a^{6}-\frac{38\cdots 49}{22138551330}a^{5}+\frac{34\cdots 53}{22138551330}a^{4}+\frac{26\cdots 51}{22138551330}a^{3}+\frac{48\cdots 43}{22138551330}a^{2}+\frac{54\cdots 75}{316265019}a+\frac{38\cdots 32}{11069275665}$
|
| |
| Regulator: | \( 3138.99389013 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{4}\cdot 3138.99389013 \cdot 35}{2\cdot\sqrt{524698762940416}}\cr\approx \mathstrut & 3.73760130171 \end{aligned}\]
Galois group
$C_2^2\wr C_2$ (as 8T18):
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_2^2 \wr C_2$ |
| Character table for $C_2^2 \wr C_2$ |
Intermediate fields
| \(\Q(\sqrt{-71}) \), 4.0.22906304.1, 4.0.2863288.1, 4.0.40328.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Minimal sibling: | 8.0.32793672683776.1 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.2.0.1}{2} }^{4}$ | ${\href{/padicField/5.2.0.1}{2} }^{2}{,}\,{\href{/padicField/5.1.0.1}{1} }^{4}$ | ${\href{/padicField/7.2.0.1}{2} }^{4}$ | ${\href{/padicField/11.4.0.1}{4} }^{2}$ | ${\href{/padicField/13.4.0.1}{4} }^{2}$ | ${\href{/padicField/17.4.0.1}{4} }^{2}$ | ${\href{/padicField/19.2.0.1}{2} }^{4}$ | ${\href{/padicField/23.2.0.1}{2} }^{4}$ | ${\href{/padicField/29.2.0.1}{2} }^{4}$ | ${\href{/padicField/31.2.0.1}{2} }^{4}$ | ${\href{/padicField/37.2.0.1}{2} }^{2}{,}\,{\href{/padicField/37.1.0.1}{1} }^{4}$ | ${\href{/padicField/41.4.0.1}{4} }^{2}$ | ${\href{/padicField/43.2.0.1}{2} }^{4}$ | ${\href{/padicField/47.2.0.1}{2} }^{4}$ | ${\href{/padicField/53.4.0.1}{4} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.2.3a1.4 | $x^{2} + 4 x + 10$ | $2$ | $1$ | $3$ | $C_2$ | $$[3]$$ |
| 2.1.2.3a1.4 | $x^{2} + 4 x + 10$ | $2$ | $1$ | $3$ | $C_2$ | $$[3]$$ | |
| 2.2.2.6a1.1 | $x^{4} + 2 x^{3} + 3 x^{2} + 2 x + 3$ | $2$ | $2$ | $6$ | $C_2^2$ | $$[3]^{2}$$ | |
|
\(71\)
| 71.2.4.6a1.2 | $x^{8} + 276 x^{7} + 28594 x^{6} + 1319832 x^{5} + 23067339 x^{4} + 9238824 x^{3} + 1401106 x^{2} + 94668 x + 2472$ | $4$ | $2$ | $6$ | $D_4$ | $$[\ ]_{4}^{2}$$ |