Normalized defining polynomial
\( x^{8} - 3x^{6} + 12x^{4} + 9x^{2} + 9 \)
Invariants
Degree: | $8$ |
| |
Signature: | $[0, 4]$ |
| |
Discriminant: |
\(448084224\)
\(\medspace = 2^{8}\cdot 3^{6}\cdot 7^{4}\)
|
| |
Root discriminant: | \(12.06\) |
| |
Galois root discriminant: | $2\cdot 3^{3/4}7^{1/2}\approx 12.06201756903818$ | ||
Ramified primes: |
\(2\), \(3\), \(7\)
|
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$ $=$ $\Gal(K/\Q)$: | $D_4$ |
| |
This field is Galois over $\Q$. | |||
This is not a CM field. | |||
Maximal CM subfield: | \(\Q(\sqrt{-3}, \sqrt{-7})\) |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{3}a^{4}$, $\frac{1}{3}a^{5}$, $\frac{1}{36}a^{6}-\frac{1}{3}a^{2}+\frac{1}{4}$, $\frac{1}{36}a^{7}-\frac{1}{3}a^{3}+\frac{1}{4}a$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $2$ |
Class group and class number
Ideal class group: | $C_{2}$, which has order $2$ |
| |
Narrow class group: | $C_{2}$, which has order $2$ |
|
Unit group
Rank: | $3$ |
| |
Torsion generator: |
\( -\frac{1}{12} a^{6} + \frac{1}{3} a^{4} - a^{2} + \frac{1}{4} \)
(order $6$)
|
| |
Fundamental units: |
$\frac{1}{36}a^{6}-\frac{1}{3}a^{2}+\frac{1}{4}$, $\frac{1}{12}a^{7}-\frac{1}{36}a^{6}-\frac{1}{3}a^{5}+a^{3}-\frac{2}{3}a^{2}-\frac{1}{4}a-\frac{1}{4}$, $\frac{5}{36}a^{7}+\frac{7}{36}a^{6}-\frac{1}{3}a^{5}-\frac{2}{3}a^{4}+\frac{4}{3}a^{3}+\frac{8}{3}a^{2}+\frac{9}{4}a+\frac{3}{4}$
|
| |
Regulator: | \( 25.2649174316 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{4}\cdot 25.2649174316 \cdot 2}{6\cdot\sqrt{448084224}}\cr\approx \mathstrut & 0.620063653832 \end{aligned}\]
Galois group
A solvable group of order 8 |
The 5 conjugacy class representatives for $D_4$ |
Character table for $D_4$ |
Intermediate fields
\(\Q(\sqrt{-7}) \), \(\Q(\sqrt{21}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-3}, \sqrt{-7})\), 4.2.21168.1 x2, 4.0.3024.2 x2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 4 siblings: | 4.2.21168.1, 4.0.3024.2 |
Minimal sibling: | 4.0.3024.2 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/padicField/5.2.0.1}{2} }^{4}$ | R | ${\href{/padicField/11.4.0.1}{4} }^{2}$ | ${\href{/padicField/13.2.0.1}{2} }^{4}$ | ${\href{/padicField/17.2.0.1}{2} }^{4}$ | ${\href{/padicField/19.2.0.1}{2} }^{4}$ | ${\href{/padicField/23.4.0.1}{4} }^{2}$ | ${\href{/padicField/29.4.0.1}{4} }^{2}$ | ${\href{/padicField/31.2.0.1}{2} }^{4}$ | ${\href{/padicField/37.2.0.1}{2} }^{4}$ | ${\href{/padicField/41.2.0.1}{2} }^{4}$ | ${\href{/padicField/43.1.0.1}{1} }^{8}$ | ${\href{/padicField/47.2.0.1}{2} }^{4}$ | ${\href{/padicField/53.4.0.1}{4} }^{2}$ | ${\href{/padicField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.2.2.4a1.2 | $x^{4} + 2 x^{3} + 5 x^{2} + 8 x + 5$ | $2$ | $2$ | $4$ | $C_4$ | $$[2]^{2}$$ |
2.2.2.4a1.2 | $x^{4} + 2 x^{3} + 5 x^{2} + 8 x + 5$ | $2$ | $2$ | $4$ | $C_4$ | $$[2]^{2}$$ | |
\(3\)
| 3.2.4.6a1.2 | $x^{8} + 8 x^{7} + 32 x^{6} + 80 x^{5} + 136 x^{4} + 160 x^{3} + 128 x^{2} + 64 x + 19$ | $4$ | $2$ | $6$ | $D_4$ | $$[\ ]_{4}^{2}$$ |
\(7\)
| 7.1.2.1a1.1 | $x^{2} + 7$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
7.1.2.1a1.1 | $x^{2} + 7$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
7.1.2.1a1.1 | $x^{2} + 7$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
7.1.2.1a1.1 | $x^{2} + 7$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
* | 1.3.2t1.a.a | $1$ | $ 3 $ | \(\Q(\sqrt{-3}) \) | $C_2$ (as 2T1) | $1$ | $-1$ |
* | 1.21.2t1.a.a | $1$ | $ 3 \cdot 7 $ | \(\Q(\sqrt{21}) \) | $C_2$ (as 2T1) | $1$ | $1$ |
* | 1.7.2t1.a.a | $1$ | $ 7 $ | \(\Q(\sqrt{-7}) \) | $C_2$ (as 2T1) | $1$ | $-1$ |
*2 | 2.1008.4t3.b.a | $2$ | $ 2^{4} \cdot 3^{2} \cdot 7 $ | 8.0.448084224.6 | $D_4$ (as 8T4) | $1$ | $0$ |