Normalized defining polynomial
\( x^{8} - 2x^{7} + 2x^{6} + 116x^{5} + 212x^{4} + 1388x^{3} + 3528x^{2} - 1848x + 484 \)
Invariants
| Degree: | $8$ |
| |
| Signature: | $[0, 4]$ |
| |
| Discriminant: |
\(370517533364224\)
\(\medspace = 2^{12}\cdot 67^{6}\)
|
| |
| Root discriminant: | \(66.24\) |
| |
| Galois root discriminant: | $2^{19/12}67^{3/4}\approx 70.17572829269109$ | ||
| Ramified primes: |
\(2\), \(67\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | \(\Q(\sqrt{-1}) \) | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}$, $\frac{1}{22}a^{5}+\frac{1}{11}a^{4}+\frac{1}{11}a^{3}-\frac{1}{11}a^{2}-\frac{5}{11}a$, $\frac{1}{22}a^{6}-\frac{1}{11}a^{4}-\frac{3}{11}a^{3}-\frac{3}{11}a^{2}-\frac{1}{11}a$, $\frac{1}{1440692}a^{7}-\frac{7091}{720346}a^{6}-\frac{1686}{360173}a^{5}-\frac{22505}{720346}a^{4}-\frac{90501}{720346}a^{3}+\frac{86095}{360173}a^{2}-\frac{68949}{360173}a-\frac{6828}{32743}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{2}$, which has order $2$ |
| |
| Narrow class group: | $C_{2}$, which has order $2$ |
|
Unit group
| Rank: | $3$ |
| |
| Torsion generator: |
\( -\frac{4079}{720346} a^{7} + \frac{12120}{360173} a^{6} - \frac{93573}{720346} a^{5} - \frac{78963}{360173} a^{4} - \frac{23746}{360173} a^{3} - \frac{2448642}{360173} a^{2} + \frac{2678871}{360173} a - \frac{58505}{32743} \)
(order $4$)
|
| |
| Fundamental units: |
$\frac{20643}{720346}a^{7}-\frac{51046}{360173}a^{6}+\frac{367017}{720346}a^{5}+\frac{1185429}{720346}a^{4}+\frac{692811}{360173}a^{3}+\frac{12871575}{360173}a^{2}-\frac{639597}{360173}a+\frac{16422}{32743}$, $\frac{136833}{1440692}a^{7}-\frac{369657}{720346}a^{6}+\frac{694343}{360173}a^{5}+\frac{1647021}{360173}a^{4}+\frac{2957109}{720346}a^{3}+\frac{42369864}{360173}a^{2}-\frac{20460358}{360173}a+\frac{451440}{32743}$, $\frac{17\cdots 49}{1440692}a^{7}-\frac{25\cdots 86}{360173}a^{6}-\frac{13\cdots 21}{720346}a^{5}+\frac{76\cdots 19}{360173}a^{4}-\frac{18\cdots 83}{720346}a^{3}-\frac{58\cdots 93}{360173}a^{2}+\frac{29\cdots 06}{360173}a-\frac{65\cdots 34}{32743}$
|
| |
| Regulator: | \( 9547.44020548 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{4}\cdot 9547.44020548 \cdot 2}{4\cdot\sqrt{370517533364224}}\cr\approx \mathstrut & 0.386520064019 \end{aligned}\]
Galois group
$C_2\times S_4$ (as 8T24):
| A solvable group of order 48 |
| The 10 conjugacy class representatives for $S_4\times C_2$ |
| Character table for $S_4\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 4.2.4812208.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 siblings: | 6.2.76995328.1, 6.0.5158686976.1 |
| Degree 8 sibling: | 8.4.370517533364224.1 |
| Degree 12 siblings: | deg 12, deg 12, deg 12, deg 12, deg 12, deg 12 |
| Degree 16 sibling: | deg 16 |
| Degree 24 siblings: | deg 24, deg 24, deg 24, deg 24 |
| Minimal sibling: | 6.2.76995328.1 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.4.0.1}{4} }^{2}$ | ${\href{/padicField/5.4.0.1}{4} }^{2}$ | ${\href{/padicField/7.4.0.1}{4} }^{2}$ | ${\href{/padicField/11.2.0.1}{2} }^{4}$ | ${\href{/padicField/13.4.0.1}{4} }^{2}$ | ${\href{/padicField/17.3.0.1}{3} }^{2}{,}\,{\href{/padicField/17.1.0.1}{1} }^{2}$ | ${\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.2.0.1}{2} }$ | ${\href{/padicField/23.6.0.1}{6} }{,}\,{\href{/padicField/23.2.0.1}{2} }$ | ${\href{/padicField/29.3.0.1}{3} }^{2}{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | ${\href{/padicField/31.4.0.1}{4} }^{2}$ | ${\href{/padicField/37.3.0.1}{3} }^{2}{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ | ${\href{/padicField/41.2.0.1}{2} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }^{4}$ | ${\href{/padicField/43.4.0.1}{4} }^{2}$ | ${\href{/padicField/47.6.0.1}{6} }{,}\,{\href{/padicField/47.2.0.1}{2} }$ | ${\href{/padicField/53.4.0.1}{4} }^{2}$ | ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.8.12b1.3 | $x^{8} + 2 x^{7} + 2 x^{5} + 2 x^{2} + 2$ | $8$ | $1$ | $12$ | $S_4\times C_2$ | $$[\frac{4}{3}, \frac{4}{3}, 2]_{3}^{2}$$ |
|
\(67\)
| 67.2.4.6a1.2 | $x^{8} + 252 x^{7} + 23822 x^{6} + 1001700 x^{5} + 15848241 x^{4} + 2003400 x^{3} + 95288 x^{2} + 2016 x + 83$ | $4$ | $2$ | $6$ | $D_4$ | $$[\ ]_{4}^{2}$$ |