Normalized defining polynomial
\( x^{8} - 2x^{7} - 109x^{6} + 190x^{5} + 4949x^{4} - 6404x^{3} - 108620x^{2} + 80160x + 973168 \)
Invariants
| Degree: | $8$ |
| |
| Signature: | $[0, 4]$ |
| |
| Discriminant: |
\(3531768125399761\)
\(\medspace = 13^{4}\cdot 593^{4}\)
|
| |
| Root discriminant: | \(87.80\) |
| |
| Galois root discriminant: | $13^{1/2}593^{1/2}\approx 87.80091115700337$ | ||
| Ramified primes: |
\(13\), \(593\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{4}a^{4}-\frac{1}{4}a^{3}+\frac{1}{4}a^{2}$, $\frac{1}{4}a^{5}+\frac{1}{4}a^{2}$, $\frac{1}{8}a^{6}-\frac{1}{8}a^{4}-\frac{3}{8}a^{2}+\frac{1}{4}a-\frac{1}{2}$, $\frac{1}{1134721936}a^{7}+\frac{8346879}{283680484}a^{6}+\frac{141700887}{1134721936}a^{5}-\frac{9244077}{141840242}a^{4}+\frac{210950769}{1134721936}a^{3}+\frac{279534233}{567360968}a^{2}+\frac{33798795}{283680484}a+\frac{7767074}{70920121}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $2$ |
Class group and class number
| Ideal class group: | $C_{6}$, which has order $6$ (assuming GRH) |
| |
| Narrow class group: | $C_{6}$, which has order $6$ (assuming GRH) |
|
Unit group
| Rank: | $3$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{394013}{1134721936}a^{7}+\frac{32147}{141840242}a^{6}-\frac{15507961}{1134721936}a^{5}-\frac{12793487}{283680484}a^{4}+\frac{98255933}{1134721936}a^{3}+\frac{1457514513}{567360968}a^{2}+\frac{1202695375}{283680484}a-\frac{1648096213}{70920121}$, $\frac{5}{4}a^{4}-\frac{5}{4}a^{3}-\frac{275}{4}a^{2}+50a+1472$, $\frac{694583793770891}{567360968}a^{7}+\frac{829388332777077}{141840242}a^{6}-\frac{57\cdots 41}{567360968}a^{5}-\frac{36\cdots 69}{70920121}a^{4}+\frac{17\cdots 95}{567360968}a^{3}+\frac{24\cdots 25}{141840242}a^{2}-\frac{26\cdots 51}{141840242}a-\frac{98\cdots 17}{70920121}$
|
| |
| Regulator: | \( 17510.7239216 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{4}\cdot 17510.7239216 \cdot 6}{2\cdot\sqrt{3531768125399761}}\cr\approx \mathstrut & 1.37768121804 \end{aligned}\] (assuming GRH)
Galois group
| A solvable group of order 24 |
| The 5 conjugacy class representatives for $S_4$ |
| Character table for $S_4$ |
Intermediate fields
| \(\Q(\sqrt{7709}) \), 4.0.7709.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | deg 24 |
| Degree 4 sibling: | 4.0.7709.1 |
| Degree 6 siblings: | 6.2.458135701829.1, 6.2.59428681.1 |
| Degree 12 siblings: | deg 12, deg 12 |
| Minimal sibling: | 4.0.7709.1 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.2.0.1}{2} }^{4}$ | ${\href{/padicField/3.4.0.1}{4} }^{2}$ | ${\href{/padicField/5.3.0.1}{3} }^{2}{,}\,{\href{/padicField/5.1.0.1}{1} }^{2}$ | ${\href{/padicField/7.3.0.1}{3} }^{2}{,}\,{\href{/padicField/7.1.0.1}{1} }^{2}$ | ${\href{/padicField/11.2.0.1}{2} }^{4}$ | R | ${\href{/padicField/17.3.0.1}{3} }^{2}{,}\,{\href{/padicField/17.1.0.1}{1} }^{2}$ | ${\href{/padicField/19.2.0.1}{2} }^{4}$ | ${\href{/padicField/23.3.0.1}{3} }^{2}{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ | ${\href{/padicField/29.3.0.1}{3} }^{2}{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | ${\href{/padicField/31.4.0.1}{4} }^{2}$ | ${\href{/padicField/37.2.0.1}{2} }^{4}$ | ${\href{/padicField/41.3.0.1}{3} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.4.0.1}{4} }^{2}$ | ${\href{/padicField/47.3.0.1}{3} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | ${\href{/padicField/53.2.0.1}{2} }^{4}$ | ${\href{/padicField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(13\)
| 13.2.2.2a1.2 | $x^{4} + 24 x^{3} + 148 x^{2} + 48 x + 17$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |
| 13.2.2.2a1.2 | $x^{4} + 24 x^{3} + 148 x^{2} + 48 x + 17$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
|
\(593\)
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |