Normalized defining polynomial
\( x^{8} - 3x^{7} + 22x^{6} - 68x^{5} + 213x^{4} - 503x^{3} + 3638x^{2} + 4284x + 3992 \)
Invariants
| Degree: | $8$ |
| |
| Signature: | $[0, 4]$ |
| |
| Discriminant: |
\(295143054153984\)
\(\medspace = 2^{8}\cdot 3^{2}\cdot 71^{6}\)
|
| |
| Root discriminant: | \(64.38\) |
| |
| Galois root discriminant: | $2^{2}3^{1/2}71^{3/4}\approx 169.4588989312306$ | ||
| Ramified primes: |
\(2\), \(3\), \(71\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2^2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | \(\Q(\sqrt{-71}) \) | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2}a^{5}-\frac{1}{2}a$, $\frac{1}{12}a^{6}-\frac{1}{12}a^{5}-\frac{1}{2}a^{4}-\frac{1}{4}a^{2}-\frac{5}{12}a-\frac{1}{6}$, $\frac{1}{10497907680}a^{7}+\frac{32317773}{3499302560}a^{6}+\frac{417335}{5196984}a^{5}-\frac{276240729}{874825640}a^{4}-\frac{254974561}{3499302560}a^{3}-\frac{722887829}{10497907680}a^{2}-\frac{14422391}{40376568}a+\frac{24878521}{2624476920}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $2$ |
Class group and class number
| Ideal class group: | $C_{70}$, which has order $70$ |
| |
| Narrow class group: | $C_{70}$, which has order $70$ |
|
Unit group
| Rank: | $3$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{10368219}{1749651280}a^{7}-\frac{29509019}{1749651280}a^{6}+\frac{104751}{866164}a^{5}-\frac{156115273}{437412820}a^{4}+\frac{1792661023}{1749651280}a^{3}-\frac{3775191151}{1749651280}a^{2}+\frac{128019941}{6729428}a+\frac{14986903419}{437412820}$, $\frac{236903}{5248953840}a^{7}-\frac{15047143}{5248953840}a^{6}+\frac{56807}{2598492}a^{5}-\frac{50596447}{437412820}a^{4}+\frac{722366137}{1749651280}a^{3}-\frac{4551846667}{5248953840}a^{2}+\frac{410123}{6729428}a+\frac{95923783}{1312238460}$, $\frac{109271824657}{524895384}a^{7}-\frac{216960658981}{524895384}a^{6}+\frac{143708599}{216541}a^{5}+\frac{461553811501}{43741282}a^{4}-\frac{12097827883273}{174965128}a^{3}+\frac{116362349290855}{524895384}a^{2}+\frac{1443410032124}{5047071}a+\frac{12656441176375}{43741282}$
|
| |
| Regulator: | \( 2626.22129918 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{4}\cdot 2626.22129918 \cdot 70}{2\cdot\sqrt{295143054153984}}\cr\approx \mathstrut & 8.33878071760 \end{aligned}\]
Galois group
$C_2^2\wr C_2$ (as 8T18):
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_2^2 \wr C_2$ |
| Character table for $C_2^2 \wr C_2$ |
Intermediate fields
| \(\Q(\sqrt{-71}) \), 4.0.2863288.1, 4.0.60492.1, 4.0.8589864.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.2.0.1}{2} }^{4}$ | ${\href{/padicField/7.4.0.1}{4} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }^{2}$ | ${\href{/padicField/13.2.0.1}{2} }^{4}$ | ${\href{/padicField/17.4.0.1}{4} }^{2}$ | ${\href{/padicField/19.2.0.1}{2} }^{4}$ | ${\href{/padicField/23.2.0.1}{2} }^{4}$ | ${\href{/padicField/29.2.0.1}{2} }^{4}$ | ${\href{/padicField/31.4.0.1}{4} }^{2}$ | ${\href{/padicField/37.2.0.1}{2} }^{4}$ | ${\href{/padicField/41.4.0.1}{4} }^{2}$ | ${\href{/padicField/43.2.0.1}{2} }^{4}$ | ${\href{/padicField/47.2.0.1}{2} }^{4}$ | ${\href{/padicField/53.4.0.1}{4} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| 2.1.4.8b1.5 | $x^{4} + 4 x^{3} + 2 x^{2} + 4 x + 6$ | $4$ | $1$ | $8$ | $C_2^2$ | $$[2, 3]$$ | |
|
\(3\)
| 3.2.1.0a1.1 | $x^{2} + 2 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
| 3.2.1.0a1.1 | $x^{2} + 2 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 3.2.2.2a1.2 | $x^{4} + 4 x^{3} + 8 x^{2} + 8 x + 7$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
|
\(71\)
| 71.2.4.6a1.2 | $x^{8} + 276 x^{7} + 28594 x^{6} + 1319832 x^{5} + 23067339 x^{4} + 9238824 x^{3} + 1401106 x^{2} + 94668 x + 2472$ | $4$ | $2$ | $6$ | $D_4$ | $$[\ ]_{4}^{2}$$ |